Bimodal Speech Emotion Recognition using Fused Intra and Cross Modality Features

计算机科学 特征学习 模态(人机交互) 特征(语言学) 人工智能 编码器 语音识别 模式 卷积神经网络 深度学习 循环神经网络 情绪识别 模式识别(心理学) 人工神经网络 操作系统 哲学 社会学 语言学 社会科学
作者
Samuel Kakuba,Dong Seog Han
标识
DOI:10.1109/icufn57995.2023.10199790
摘要

The interactive speech between two or more inter locutors involves the text and acoustic modalities. These modalities consist of intra and cross-modality relationships at different time intervals which if modeled well, can avail emotionally rich cues for robust and accurate prediction of emotion states. This necessitates models that take into consideration long short-term dependency between the current, previous, and future time steps using multimodal approaches. Moreover, it is important to contextualize the interactive speech in order to accurately infer the emotional state. A combination of recurrent and/or convolutional neural networks with attention mechanisms is often used by researchers. In this paper, we propose a deep learning-based bimodal speech emotion recognition (DLBER) model that uses multi-level fusion to learn intra and cross-modality feature representations. The proposed DLBER model uses the transformer encoder to model the intra-modality features that are combined at the first level fusion in the local feature learning block (LFLB). We also use self-attentive bidirectional LSTM layers to further extract intramodality features before the second level fusion for further progressive learning of the cross-modality features. The resultant feature representation is fed into another self-attentive bidirectional LSTM layer in the global feature learning block (GFLB). The interactive emotional dyadic motion capture (IEMOCAP) dataset was used to evaluate the performance of the proposed DLBER model. The proposed DLBER model achieves 72.93% and 74.05% of F1 score and accuracy respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
毕业就好发布了新的文献求助10
刚刚
刚刚
刚刚
冷艳乐松发布了新的文献求助10
1秒前
iedq完成签到 ,获得积分10
1秒前
嗯呢发布了新的文献求助10
1秒前
vivienne完成签到,获得积分10
1秒前
搜集达人应助2021的萌爷爷采纳,获得10
1秒前
烟花不能太放肆关注了科研通微信公众号
1秒前
zyy完成签到,获得积分10
1秒前
2秒前
2秒前
wanci应助细腻晓露采纳,获得10
2秒前
Lucas应助XinyiZhang采纳,获得10
3秒前
科研通AI2S应助芋头采纳,获得10
4秒前
瘦瘦的铅笔完成签到 ,获得积分10
4秒前
manan发布了新的文献求助10
4秒前
01259发布了新的文献求助30
4秒前
4秒前
斯文败类应助zyh945采纳,获得10
4秒前
南山无梅落完成签到 ,获得积分10
4秒前
淡定吃吃完成签到,获得积分10
4秒前
科研通AI5应助称心砖头采纳,获得10
5秒前
淡淡从蕾完成签到,获得积分10
5秒前
Ehgnix完成签到,获得积分10
5秒前
嘴嘴是大嘴007完成签到,获得积分10
6秒前
6秒前
但愿完成签到 ,获得积分10
6秒前
犹豫的一斩应助Pangsj采纳,获得10
7秒前
Jenny应助wjs0406采纳,获得10
7秒前
7秒前
酒九发布了新的文献求助10
7秒前
落晨发布了新的文献求助10
8秒前
包容可乐完成签到,获得积分10
8秒前
9秒前
眼睛大的一曲完成签到,获得积分10
9秒前
10秒前
英俊的铭应助wu采纳,获得10
10秒前
认真的飞扬完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740