Bimodal Speech Emotion Recognition using Fused Intra and Cross Modality Features

计算机科学 特征学习 模态(人机交互) 特征(语言学) 人工智能 编码器 语音识别 模式 卷积神经网络 深度学习 循环神经网络 情绪识别 模式识别(心理学) 人工神经网络 操作系统 哲学 社会学 语言学 社会科学
作者
Samuel Kakuba,Dong Seog Han
标识
DOI:10.1109/icufn57995.2023.10199790
摘要

The interactive speech between two or more inter locutors involves the text and acoustic modalities. These modalities consist of intra and cross-modality relationships at different time intervals which if modeled well, can avail emotionally rich cues for robust and accurate prediction of emotion states. This necessitates models that take into consideration long short-term dependency between the current, previous, and future time steps using multimodal approaches. Moreover, it is important to contextualize the interactive speech in order to accurately infer the emotional state. A combination of recurrent and/or convolutional neural networks with attention mechanisms is often used by researchers. In this paper, we propose a deep learning-based bimodal speech emotion recognition (DLBER) model that uses multi-level fusion to learn intra and cross-modality feature representations. The proposed DLBER model uses the transformer encoder to model the intra-modality features that are combined at the first level fusion in the local feature learning block (LFLB). We also use self-attentive bidirectional LSTM layers to further extract intramodality features before the second level fusion for further progressive learning of the cross-modality features. The resultant feature representation is fed into another self-attentive bidirectional LSTM layer in the global feature learning block (GFLB). The interactive emotional dyadic motion capture (IEMOCAP) dataset was used to evaluate the performance of the proposed DLBER model. The proposed DLBER model achieves 72.93% and 74.05% of F1 score and accuracy respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mashichuang发布了新的文献求助10
3秒前
5秒前
5秒前
小马甲应助上的工人进场采纳,获得10
6秒前
逆蝶发布了新的文献求助10
6秒前
wen发布了新的文献求助10
7秒前
LeimingDai完成签到,获得积分10
7秒前
酷波er应助苹果可燕采纳,获得10
8秒前
久久完成签到,获得积分10
8秒前
9秒前
9秒前
DT发布了新的文献求助10
10秒前
11秒前
da_line发布了新的文献求助10
11秒前
田様应助Xuancheng_SINH采纳,获得10
11秒前
雷培发布了新的文献求助10
13秒前
ill完成签到,获得积分10
14秒前
ArdenWang完成签到,获得积分10
14秒前
14秒前
赵帅完成签到 ,获得积分10
19秒前
20秒前
21秒前
22秒前
wu完成签到 ,获得积分10
23秒前
苹果可燕发布了新的文献求助10
23秒前
从容襄完成签到,获得积分10
23秒前
酷波er应助Yatpome采纳,获得10
24秒前
25秒前
25秒前
Larson发布了新的文献求助20
26秒前
纯真的德地完成签到 ,获得积分10
27秒前
fanyueyue应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
何相逢应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982