变构调节
合作性
效应器
变构酶
蛋白质设计
生物物理学
化学
合作约束
蛋白质结构
血浆蛋白结合
结合位点
生物
计算生物学
生物化学
受体
作者
Arvind Pillai,Abbas Idris,Annika Philomin,Connor Weidle,Rebecca Skotheim,Philip J. Y. Leung,Adam Broerman,Cullen Demakis,Andrew J. Borst,Florian Praetorius,David Baker
标识
DOI:10.1101/2023.11.01.565167
摘要
Allosteric modulation of protein function, wherein the binding of an effector to a protein triggers conformational changes at distant functional sites, plays a central role in the control of metabolism and cell signaling 1–3 . There has been considerable interest in designing allosteric systems, both to gain insight into the mechanisms underlying such “action at a distance” modulation and to create synthetic proteins whose functions can be regulated by effectors 4–7 . However, emulating the subtle conformational changes distributed across many residues, characteristic of natural allosteric proteins, is a significant challenge 8,9 . Here, inspired by the classic Monod-Changeux-Wyman model of cooperativity 10 , we investigate the de novo design of allostery through rigid-body coupling of designed effector-switchable hinge modules 11 to protein interfaces 12 that direct the formation of alternative oligomeric states. We find that this approach can be used to generate a wide variety of allosterically switchable systems, including cyclic rings that incorporate or eject subunits in response to effector binding and dihedral cages that undergo effector-induced disassembly. Size-exclusion chromatography, mass photometry 13 , and electron microscopy reveal that these designed allosteric protein assemblies closely resemble the design models in both the presence and absence of effectors and can have ligand-binding cooperativity comparable to classic natural systems such as hemoglobin 14 . Our results indicate that allostery can arise from global coupling of the energetics of protein substructures without optimized sidechain-sidechain allosteric communication pathways and provide a roadmap for generating allosterically triggerable delivery systems, protein nanomachines, and cellular feedback control circuitry.
科研通智能强力驱动
Strongly Powered by AbleSci AI