Exploring the Potential of Artificial Intelligence in Breast Ultrasound

工作流程 乳房成像 乳腺超声检查 可解释性 人工智能 临床实习 乳腺摄影术 医学物理学 医学 人工智能应用 计算机科学 机器学习 乳腺癌 家庭医学 内科学 癌症 数据库
作者
Giovanni Irmici,Maurizio Cè,Gianmarco Della Pepa,Elisa D’Ascoli,Claudia De Berardinis,Emilia Giambersio,Lidia Rabiolo,Ludovica La Rocca,Serena Carriero,Catherine Depretto,Gianfranco Scaperrotta,Michaela Cellina
出处
期刊:Critical Reviews in Oncogenesis [Begell House Inc.]
卷期号:29 (2): 15-28 被引量:2
标识
DOI:10.1615/critrevoncog.2023048873
摘要

Breast ultrasound has emerged as a valuable imaging modality in the detection and characterization of breast lesions, particularly in women with dense breast tissue or contraindications for mammography. Within this framework, artificial intelligence (AI) has garnered significant attention for its potential to improve diagnostic accuracy in breast ultrasound and revolutionize the workflow. This review article aims to comprehensively explore the current state of research and development in harnessing AI's capabilities for breast ultrasound. We delve into various AI techniques, including machine learning, deep learning, as well as their applications in automating lesion detection, segmentation, and classification tasks. Furthermore, the review addresses the challenges and hurdles faced in implementing AI systems in breast ultrasound diagnostics, such as data privacy, interpretability, and regulatory approval. Ethical considerations pertaining to the integration of AI into clinical practice are also discussed, emphasizing the importance of maintaining a patient-centered approach. The integration of AI into breast ultrasound holds great promise for improving diagnostic accuracy, enhancing efficiency, and ultimately advancing patient's care. By examining the current state of research and identifying future opportunities, this review aims to contribute to the understanding and utilization of AI in breast ultrasound and encourage further interdisciplinary collaboration to maximize its potential in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Kevin Huang采纳,获得10
刚刚
美女完成签到,获得积分10
1秒前
Owen应助无聊的豌豆采纳,获得10
1秒前
HXY发布了新的文献求助10
1秒前
互助遵法尚德应助轻松汲采纳,获得10
1秒前
3秒前
科研通AI2S应助Sg采纳,获得10
3秒前
3秒前
wqb196发布了新的文献求助10
4秒前
5秒前
cloudyick完成签到,获得积分10
6秒前
感动丸子完成签到,获得积分10
8秒前
8秒前
重要忆秋完成签到,获得积分10
8秒前
YE发布了新的文献求助10
9秒前
感动丸子发布了新的文献求助10
10秒前
忧郁的蓝色鸡公煲完成签到,获得积分20
11秒前
13秒前
時雨完成签到,获得积分10
14秒前
15秒前
秋qiu发布了新的文献求助10
15秒前
15秒前
科目三应助小李爱吃梨采纳,获得10
15秒前
16秒前
互助遵法尚德应助11采纳,获得10
17秒前
17秒前
17秒前
我是老大应助稳重的傥采纳,获得10
19秒前
无限桐发布了新的文献求助10
20秒前
负责湘完成签到,获得积分10
21秒前
hqn完成签到 ,获得积分10
21秒前
王代灵发布了新的文献求助10
21秒前
可爱的函函应助ZJ采纳,获得10
24秒前
英姑应助张姚采纳,获得10
25秒前
25秒前
26秒前
搜集达人应助大男采纳,获得10
26秒前
逃亡的小狗完成签到,获得积分10
29秒前
30秒前
31秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3116017
求助须知:如何正确求助?哪些是违规求助? 2766114
关于积分的说明 7685386
捐赠科研通 2421428
什么是DOI,文献DOI怎么找? 1285606
科研通“疑难数据库(出版商)”最低求助积分说明 620124
版权声明 599809