A spatially promoted SVM model for GRACE downscaling: Using ground and satellite-based datasets

缩小尺度 支持向量机 卫星 环境科学 计算机科学 遥感 相关系数 气候学 气象学 人工智能 机器学习 地质学 地理 降水 工程类 航空航天工程
作者
Hamed Yazdian,Narjes Salmani-Dehaghi,Mohammadali Alijanian
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130214-130214 被引量:9
标识
DOI:10.1016/j.jhydrol.2023.130214
摘要

Satellite-based terrestrial water storage changes have been recorded using the Gravity Recovery and Climate Experiment (GRACE) satellite which causing it an important dataset in hydrology and other related fields. GRACE dataset is widely utilized in many studies, but its coarse spatial resolution is a limiting drawback. Machine-learning approaches (e.g., ANN and SVM) are commonly applied in spatially downscaling. However, their input formation, which is in vector form, is a limitation of considering neighbor relations between the gridded-based inputs, specifically in spatial downscaling. Thus, developing an appropriate, simple, fast, and novel model to spatially downscale GRACE resolution is initially necessary for its utilizations. In this study, a Spatially Promoted Support Vector Machine (SP-SVM) model is innovatively proposed for GRACE downscaling from 0.5° to 0.25°. This promotion is investigated utilizing the distances between the unknown target points (with 0.25°) and their surrounding GRACE-valued points (0.5°), called their Distance Effect Coefficient (DEC), as the SP-SVM model input. In addition, the efficiencies of different in-situ and satellite-based datasets (fifteen variables from May 2005 to August 2020) are evaluated as the inputs of the GRACE downscaling models. After finding the most influential datasets, showing the best correlation with the GRACE, their best combinations in GRACE downscaling are identified. Based on the results, the set of PERSIANN-CDR without delay, the in-situ evaporation with a 1-month delay, and the soil moisture in 0–10 cm depth with a 1-month delay show the best performance in GRACE downscaling. The results of GRACE downscaling by the SP-SVM approach are also compared with the ones based on a usual statistical SVM (S-SVM) model, consisting of an intermediate bias interpolation to improve the estimations through a bias correction step. The results show that the SP-SVM model outperforms the common statistical SVM-based. Thus, compared with the usual S-SVM approach, the proposed SP-SVM (linear) model could be used as a simpler and more accurate model for downscaling any variable in a hierarchical process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小葡完成签到,获得积分10
1秒前
2秒前
4秒前
李昕123发布了新的文献求助10
5秒前
6秒前
Wei完成签到,获得积分10
6秒前
8秒前
11秒前
HEIKU应助现代书雪采纳,获得10
13秒前
13秒前
漫漫完成签到,获得积分10
15秒前
17秒前
港岛妹妹应助XHW采纳,获得10
20秒前
20秒前
babe发布了新的文献求助10
20秒前
撒西不理完成签到,获得积分10
21秒前
21秒前
22秒前
现代书雪完成签到,获得积分20
22秒前
文毛发布了新的文献求助10
23秒前
23秒前
纯真紫南发布了新的文献求助10
24秒前
丘比特应助meimei采纳,获得10
25秒前
漫漫发布了新的文献求助10
25秒前
青山发布了新的文献求助10
27秒前
微暖完成签到,获得积分0
27秒前
Siren发布了新的文献求助10
28秒前
cookie发布了新的文献求助10
28秒前
Hola完成签到 ,获得积分10
28秒前
紧张的怜寒完成签到,获得积分20
29秒前
伯赏雁蓉完成签到,获得积分10
30秒前
桐桐应助纯真紫南采纳,获得10
32秒前
背后归尘完成签到,获得积分10
33秒前
NexusExplorer应助漂亮幻莲采纳,获得10
34秒前
Francis发布了新的文献求助10
36秒前
非非非凡关注了科研通微信公众号
36秒前
36秒前
田様应助cookie采纳,获得10
39秒前
meimei发布了新的文献求助10
39秒前
pluto应助Jane采纳,获得30
40秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254046
求助须知:如何正确求助?哪些是违规求助? 2896409
关于积分的说明 8292456
捐赠科研通 2565281
什么是DOI,文献DOI怎么找? 1392910
科研通“疑难数据库(出版商)”最低求助积分说明 652405
邀请新用户注册赠送积分活动 629837