亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A spatially promoted SVM model for GRACE downscaling: Using ground and satellite-based datasets

缩小尺度 支持向量机 卫星 环境科学 计算机科学 遥感 相关系数 气候学 气象学 人工智能 机器学习 地质学 地理 降水 工程类 航空航天工程
作者
Hamed Yazdian,Narjes Salmani-Dehaghi,Mohammadali Alijanian
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:626: 130214-130214 被引量:9
标识
DOI:10.1016/j.jhydrol.2023.130214
摘要

Satellite-based terrestrial water storage changes have been recorded using the Gravity Recovery and Climate Experiment (GRACE) satellite which causing it an important dataset in hydrology and other related fields. GRACE dataset is widely utilized in many studies, but its coarse spatial resolution is a limiting drawback. Machine-learning approaches (e.g., ANN and SVM) are commonly applied in spatially downscaling. However, their input formation, which is in vector form, is a limitation of considering neighbor relations between the gridded-based inputs, specifically in spatial downscaling. Thus, developing an appropriate, simple, fast, and novel model to spatially downscale GRACE resolution is initially necessary for its utilizations. In this study, a Spatially Promoted Support Vector Machine (SP-SVM) model is innovatively proposed for GRACE downscaling from 0.5° to 0.25°. This promotion is investigated utilizing the distances between the unknown target points (with 0.25°) and their surrounding GRACE-valued points (0.5°), called their Distance Effect Coefficient (DEC), as the SP-SVM model input. In addition, the efficiencies of different in-situ and satellite-based datasets (fifteen variables from May 2005 to August 2020) are evaluated as the inputs of the GRACE downscaling models. After finding the most influential datasets, showing the best correlation with the GRACE, their best combinations in GRACE downscaling are identified. Based on the results, the set of PERSIANN-CDR without delay, the in-situ evaporation with a 1-month delay, and the soil moisture in 0–10 cm depth with a 1-month delay show the best performance in GRACE downscaling. The results of GRACE downscaling by the SP-SVM approach are also compared with the ones based on a usual statistical SVM (S-SVM) model, consisting of an intermediate bias interpolation to improve the estimations through a bias correction step. The results show that the SP-SVM model outperforms the common statistical SVM-based. Thus, compared with the usual S-SVM approach, the proposed SP-SVM (linear) model could be used as a simpler and more accurate model for downscaling any variable in a hierarchical process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxcvvbb1001完成签到 ,获得积分10
3秒前
Barton完成签到,获得积分10
9秒前
Ming完成签到 ,获得积分10
26秒前
coraline26发布了新的文献求助10
36秒前
trophozoite完成签到 ,获得积分10
37秒前
kuoping完成签到,获得积分0
44秒前
1分钟前
coraline26完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
dida完成签到,获得积分10
1分钟前
2分钟前
可颂歌发布了新的文献求助10
2分钟前
chen完成签到 ,获得积分10
2分钟前
2分钟前
GPTea完成签到,获得积分0
2分钟前
ffff完成签到 ,获得积分10
3分钟前
桥西小河完成签到 ,获得积分10
3分钟前
认真的幻姬完成签到,获得积分10
3分钟前
吃零食吃不下饭完成签到,获得积分10
3分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
6分钟前
秋天完成签到,获得积分10
6分钟前
7分钟前
小二郎应助馍菇采纳,获得30
7分钟前
小安发布了新的文献求助10
7分钟前
Yini应助科研通管家采纳,获得10
7分钟前
8分钟前
忘忧Aquarius完成签到,获得积分10
8分钟前
8分钟前
xinxin完成签到,获得积分10
9分钟前
Mingyue123完成签到,获得积分10
9分钟前
Yini应助科研通管家采纳,获得10
9分钟前
9分钟前
玛琳卡迪马完成签到 ,获得积分10
9分钟前
xuexue0001发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4974234
求助须知:如何正确求助?哪些是违规求助? 4229473
关于积分的说明 13172639
捐赠科研通 4018576
什么是DOI,文献DOI怎么找? 2198998
邀请新用户注册赠送积分活动 1211572
关于科研通互助平台的介绍 1126882