清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A spatially promoted SVM model for GRACE downscaling: Using ground and satellite-based datasets

缩小尺度 支持向量机 卫星 环境科学 计算机科学 遥感 相关系数 气候学 气象学 人工智能 机器学习 地质学 地理 降水 工程类 航空航天工程
作者
Hamed Yazdian,Narjes Salmani-Dehaghi,Mohammadali Alijanian
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130214-130214 被引量:9
标识
DOI:10.1016/j.jhydrol.2023.130214
摘要

Satellite-based terrestrial water storage changes have been recorded using the Gravity Recovery and Climate Experiment (GRACE) satellite which causing it an important dataset in hydrology and other related fields. GRACE dataset is widely utilized in many studies, but its coarse spatial resolution is a limiting drawback. Machine-learning approaches (e.g., ANN and SVM) are commonly applied in spatially downscaling. However, their input formation, which is in vector form, is a limitation of considering neighbor relations between the gridded-based inputs, specifically in spatial downscaling. Thus, developing an appropriate, simple, fast, and novel model to spatially downscale GRACE resolution is initially necessary for its utilizations. In this study, a Spatially Promoted Support Vector Machine (SP-SVM) model is innovatively proposed for GRACE downscaling from 0.5° to 0.25°. This promotion is investigated utilizing the distances between the unknown target points (with 0.25°) and their surrounding GRACE-valued points (0.5°), called their Distance Effect Coefficient (DEC), as the SP-SVM model input. In addition, the efficiencies of different in-situ and satellite-based datasets (fifteen variables from May 2005 to August 2020) are evaluated as the inputs of the GRACE downscaling models. After finding the most influential datasets, showing the best correlation with the GRACE, their best combinations in GRACE downscaling are identified. Based on the results, the set of PERSIANN-CDR without delay, the in-situ evaporation with a 1-month delay, and the soil moisture in 0–10 cm depth with a 1-month delay show the best performance in GRACE downscaling. The results of GRACE downscaling by the SP-SVM approach are also compared with the ones based on a usual statistical SVM (S-SVM) model, consisting of an intermediate bias interpolation to improve the estimations through a bias correction step. The results show that the SP-SVM model outperforms the common statistical SVM-based. Thus, compared with the usual S-SVM approach, the proposed SP-SVM (linear) model could be used as a simpler and more accurate model for downscaling any variable in a hierarchical process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Demi_Ming完成签到,获得积分10
5秒前
7秒前
fhw完成签到 ,获得积分10
9秒前
aero完成签到 ,获得积分10
12秒前
25秒前
SCH_zhu发布了新的文献求助10
30秒前
SCH_zhu完成签到,获得积分10
39秒前
Criminology34完成签到,获得积分0
1分钟前
John完成签到,获得积分10
1分钟前
1分钟前
大西发布了新的文献求助10
1分钟前
Una完成签到,获得积分10
1分钟前
直率若烟完成签到 ,获得积分10
1分钟前
酷酷海豚完成签到,获得积分10
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
桃子爱学习给桃子爱学习的求助进行了留言
2分钟前
muriel完成签到,获得积分0
2分钟前
大西完成签到,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
满意的伊完成签到,获得积分10
2分钟前
ADcal完成签到 ,获得积分10
3分钟前
开心的瘦子完成签到,获得积分10
3分钟前
4分钟前
ricky发布了新的文献求助10
4分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
浮游应助ricky采纳,获得10
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
4分钟前
Square完成签到,获得积分10
4分钟前
顾矜应助Rayyu_0905采纳,获得10
4分钟前
Rayyu_0905应助文件撤销了驳回
4分钟前
5分钟前
6分钟前
iman完成签到,获得积分10
6分钟前
天真发箍发布了新的文献求助10
6分钟前
8分钟前
犹豫水蓝发布了新的文献求助10
8分钟前
lovelife完成签到,获得积分10
8分钟前
犹豫水蓝完成签到,获得积分10
8分钟前
无花果应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303205
求助须知:如何正确求助?哪些是违规求助? 4450110
关于积分的说明 13849050
捐赠科研通 4336689
什么是DOI,文献DOI怎么找? 2381041
邀请新用户注册赠送积分活动 1376015
关于科研通互助平台的介绍 1342584