Few-Shot Multi-label Aspect Category Detection Utilizing Prototypical Network with Sentence-Level Weighting and Label Augmentation

计算机科学 集合(抽象数据类型) 加权 判决 人工智能 噪音(视频) 词(群论) 数据挖掘 模式识别(心理学) 机器学习 图像(数学) 数学 医学 几何学 放射科 程序设计语言
作者
Zeyu Wang,Mizuho Iwaihara
出处
期刊:Lecture Notes in Computer Science 卷期号:: 363-377
标识
DOI:10.1007/978-3-031-39821-6_30
摘要

Multi-label aspect category detection is intended to detect multiple aspect categories occurring in a given sentence. Since aspect category detection often suffers from limited datasets and data sparsity, the prototypical network with attention mechanisms has been applied for few-shot aspect category detection. Nevertheless, most of the prototypical networks used so far calculate the prototypes by taking the mean value of all the instances in the support set. This seems to ignore the variations between instances in multi-label aspect category detection. Also, several related works utilize label text information to enhance the attention mechanism. However, the label text information is often short and limited, and not specific enough to discern categories. In this paper, we first introduce support set attention along with the augmented label information to mitigate the noise at word-level for each support set instance. Moreover, we use a sentence-level attention mechanism that gives different weights to each instance in the support set in order to compute prototypes by weighted averaging. Finally, the calculated prototypes are further used in conjunction with query instances to compute query attention and thereby eliminate noises from the query set. Experimental results on the Yelp dataset show that our proposed method is useful and outperforms all baselines in four different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慢吞吞完成签到,获得积分10
刚刚
ikochou完成签到,获得积分10
刚刚
聪慧小霜应助君子扑火采纳,获得10
刚刚
yang完成签到,获得积分10
1秒前
李健应助努力退休小博士采纳,获得10
1秒前
3秒前
曾阿牛发布了新的文献求助30
4秒前
5秒前
无花果应助yang采纳,获得10
6秒前
6秒前
bearbiscuit完成签到,获得积分10
7秒前
科目三应助王旺采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
李在佛甚么关注了科研通微信公众号
10秒前
11秒前
今后应助毕瑞欣采纳,获得10
11秒前
慕青应助曾阿牛采纳,获得10
11秒前
科研通AI5应助薯条采纳,获得30
12秒前
wanci应助Folger采纳,获得30
12秒前
Alpha发布了新的文献求助10
12秒前
laoleigang完成签到,获得积分10
14秒前
lorryliu发布了新的文献求助10
14秒前
纯真沛儿发布了新的文献求助10
14秒前
xxxx发布了新的文献求助10
14秒前
XXY完成签到,获得积分10
15秒前
华仔应助橙子采纳,获得10
15秒前
情怀应助crillzlol采纳,获得10
15秒前
16秒前
16秒前
lemonyu发布了新的文献求助10
17秒前
有趣的灵魂完成签到,获得积分10
18秒前
自由十三完成签到 ,获得积分10
18秒前
浮游给李fr的求助进行了留言
19秒前
21秒前
鱼子西发布了新的文献求助10
21秒前
22秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972