Few-Shot Multi-label Aspect Category Detection Utilizing Prototypical Network with Sentence-Level Weighting and Label Augmentation

计算机科学 集合(抽象数据类型) 加权 判决 人工智能 噪音(视频) 词(群论) 数据挖掘 模式识别(心理学) 机器学习 图像(数学) 数学 几何学 医学 放射科 程序设计语言
作者
Zeyu Wang,Mizuho Iwaihara
出处
期刊:Lecture Notes in Computer Science 卷期号:: 363-377
标识
DOI:10.1007/978-3-031-39821-6_30
摘要

Multi-label aspect category detection is intended to detect multiple aspect categories occurring in a given sentence. Since aspect category detection often suffers from limited datasets and data sparsity, the prototypical network with attention mechanisms has been applied for few-shot aspect category detection. Nevertheless, most of the prototypical networks used so far calculate the prototypes by taking the mean value of all the instances in the support set. This seems to ignore the variations between instances in multi-label aspect category detection. Also, several related works utilize label text information to enhance the attention mechanism. However, the label text information is often short and limited, and not specific enough to discern categories. In this paper, we first introduce support set attention along with the augmented label information to mitigate the noise at word-level for each support set instance. Moreover, we use a sentence-level attention mechanism that gives different weights to each instance in the support set in order to compute prototypes by weighted averaging. Finally, the calculated prototypes are further used in conjunction with query instances to compute query attention and thereby eliminate noises from the query set. Experimental results on the Yelp dataset show that our proposed method is useful and outperforms all baselines in four different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偷得浮生半日闲完成签到,获得积分10
1秒前
加油完成签到 ,获得积分10
2秒前
2秒前
wanxiqianxia完成签到,获得积分10
5秒前
俟天晴完成签到 ,获得积分10
7秒前
八十八夜的茶摘完成签到,获得积分10
10秒前
zzzllove完成签到 ,获得积分10
12秒前
ChatGPT完成签到,获得积分10
13秒前
16秒前
w婷完成签到 ,获得积分10
16秒前
lingkai完成签到 ,获得积分10
18秒前
我请问呢发布了新的文献求助10
24秒前
娃娃菜妮完成签到 ,获得积分10
28秒前
wcy完成签到 ,获得积分10
32秒前
MM发布了新的文献求助30
33秒前
优娜完成签到 ,获得积分10
35秒前
CipherSage应助健壮念寒采纳,获得10
35秒前
42秒前
小二郎应助英俊智宸采纳,获得10
52秒前
斯文败类应助SuyingGuo采纳,获得10
52秒前
量子星尘发布了新的文献求助10
54秒前
花海完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
MM发布了新的文献求助30
1分钟前
英俊智宸发布了新的文献求助10
1分钟前
1分钟前
sci完成签到 ,获得积分10
1分钟前
Strongly发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
Aluhaer应助科研通管家采纳,获得150
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
清爽尔岚完成签到 ,获得积分10
1分钟前
二中所长发布了新的文献求助10
1分钟前
guo完成签到,获得积分10
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
冬雪完成签到 ,获得积分10
1分钟前
qing完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139327
求助须知:如何正确求助?哪些是违规求助? 4338303
关于积分的说明 13512484
捐赠科研通 4177497
什么是DOI,文献DOI怎么找? 2290823
邀请新用户注册赠送积分活动 1291325
关于科研通互助平台的介绍 1233611