Retention Time Prediction through Learning from a Small Training Data Set with a Pretrained Graph Neural Network

杠杆(统计) 学习迁移 计算机科学 训练集 机器学习 人工智能 标记数据 人工神经网络 一般化 图形 数据集 集合(抽象数据类型) 理论计算机科学 数学 数学分析 程序设计语言
作者
Youngchun Kwon,Hyukju Kwon,Jongmin Han,Myeonginn Kang,Ji‐Yeong Kim,Dongyeeb Shin,Youn-Suk Choi,Seokho Kang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (47): 17273-17283 被引量:1
标识
DOI:10.1021/acs.analchem.3c03177
摘要

Graph neural networks (GNNs) have shown remarkable performance in predicting the retention time (RT) for small molecules. However, the training data set for a particular target chromatographic system tends to exhibit scarcity, which poses a challenge because the experimental process for measuring RT is costly. To address this challenge, transfer learning has been used to leverage an abundant training data set from a related source task. In this study, we present an improved transfer learning method to better predict the RT of molecules for a target chromatographic system by learning from a small training data set with a pretrained GNN. We use a graph isomorphism network as the architecture of the GNN. The GNN is pretrained on the METLIN-SMRT data set and is then fine-tuned on the target training data set for a fixed number of training iterations using the limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer with a learning rate decay. We demonstrate that the proposed method achieves superior predictive performance on various chromatographic systems compared with that of the existing transfer learning methods, especially when only a small training data set is available for use. A potential avenue for future research is to leverage multiple small training data sets from different chromatographic systems to further enhance the generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪莫茗完成签到,获得积分10
刚刚
1秒前
2秒前
十里长亭发布了新的文献求助10
2秒前
明明就完成签到,获得积分20
2秒前
Chris发布了新的文献求助10
2秒前
ohyeah8888应助浮生采纳,获得100
3秒前
唐新惠发布了新的文献求助10
3秒前
dava应助aprilvanilla采纳,获得10
3秒前
4秒前
4秒前
赘婿应助片刻采纳,获得10
4秒前
烟花应助diraczh采纳,获得10
5秒前
晴乐令发布了新的文献求助10
5秒前
结实的导师完成签到,获得积分20
5秒前
5秒前
小蘑菇应助vivia采纳,获得10
5秒前
6秒前
6秒前
搜集达人应助明明就采纳,获得30
7秒前
九湖夷上发布了新的文献求助10
7秒前
希望天下0贩的0应助popcorn采纳,获得10
7秒前
hancahngxiao发布了新的文献求助10
7秒前
hushidi发布了新的文献求助10
8秒前
大钱完成签到,获得积分20
9秒前
诸葛醉薇应助林师刚采纳,获得10
9秒前
10秒前
dengqiuxiawy发布了新的文献求助10
11秒前
12秒前
小酒完成签到,获得积分20
12秒前
Leung应助可爱的菠萝采纳,获得10
12秒前
fagfagsf发布了新的文献求助10
13秒前
坦率的心锁完成签到,获得积分20
13秒前
14秒前
14秒前
科目三应助橘子味汽水采纳,获得10
15秒前
15秒前
陈平安完成签到,获得积分20
16秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748456
求助须知:如何正确求助?哪些是违规求助? 3291468
关于积分的说明 10073184
捐赠科研通 3007264
什么是DOI,文献DOI怎么找? 1651526
邀请新用户注册赠送积分活动 786444
科研通“疑难数据库(出版商)”最低求助积分说明 751742