Modality preserving U-Net for segmentation of multimodal medical images

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 医学影像学 深度学习 图像分割 计算机视觉 模式识别(心理学) 哲学 语言学
作者
Xuan Zhang,Fan Zhang,Liang Xu,Shuwei Shen,Pengfei Shao,Mingzhai Sun,Hanjun Liu,Peng Yao,Ronald X. Xu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (8): 5242-5257 被引量:5
标识
DOI:10.21037/qims-22-1367
摘要

Recent advances in artificial intelligence and digital image processing have inspired the use of deep neural networks for segmentation tasks in multimodal medical imaging. Unlike natural images, multimodal medical images contain much richer information regarding different modal properties and therefore present more challenges for semantic segmentation. However, there is no report on systematic research that integrates multi-scaled and structured analysis of single-modal and multimodal medical images.We propose a deep neural network, named as Modality Preserving U-Net (MPU-Net), for modality-preserving analysis and segmentation of medical targets from multimodal medical images. The proposed MPU-Net consists of a modality preservation encoder (MPE) module that preserves the feature independency among the modalities and a modality fusion decoder (MFD) module that performs a multiscale feature fusion analysis for each modality in order to provide a rich feature representation for the final task. The effectiveness of such a single-modal preservation and multimodal fusion feature extraction approach is verified by multimodal segmentation experiments and an ablation study using brain tumor and prostate datasets from Medical Segmentation Decathlon (MSD).The segmentation experiments demonstrated the superiority of MPU-Net over other methods in the segmentation tasks for multimodal medical images. In the brain tumor segmentation tasks, the Dice scores (DSCs) for the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET) regions were 89.42%, 86.92%, and 84.59%, respectively. In the meanwhile, the 95% Hausdorff distance (HD95) results were 3.530, 4.899 and 2.555, respectively. In the prostate segmentation tasks, the DSCs for the peripheral zone (PZ) and the transitional zone (TZ) of the prostate were 71.20% and 90.38%, respectively. In the meanwhile, the 95% HD95 results were 6.367 and 4.766, respectively. The ablation study showed that the combination of single-modal preservation and multimodal fusion methods improved the performance of multimodal medical image feature analysis.In the segmentation tasks using brain tumor and prostate datasets, the MPU-Net method has achieved the improved performance in comparison with the conventional methods, indicating its potential application for other segmentation tasks in multimodal medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx完成签到,获得积分10
1秒前
qianci2009完成签到,获得积分0
1秒前
yqq完成签到 ,获得积分10
3秒前
养猪大户完成签到 ,获得积分10
7秒前
Docline完成签到,获得积分10
8秒前
车秋寒完成签到,获得积分10
8秒前
齐欢完成签到,获得积分10
9秒前
浮游应助murraya采纳,获得10
10秒前
李子潭应助铁风筝芳芳采纳,获得40
12秒前
浮游应助侯笑笑采纳,获得10
16秒前
Criminology34应助xqh采纳,获得10
17秒前
你我的共同完成签到 ,获得积分10
23秒前
Yi羿完成签到 ,获得积分10
24秒前
mmm4完成签到 ,获得积分10
24秒前
李爱国应助murraya采纳,获得10
31秒前
wakkkkk完成签到 ,获得积分10
37秒前
直率若烟完成签到 ,获得积分10
38秒前
666666完成签到,获得积分10
39秒前
ESC惠子子子子子完成签到 ,获得积分10
41秒前
害羞的雁易完成签到 ,获得积分10
42秒前
zj完成签到 ,获得积分20
43秒前
46秒前
语恒完成签到,获得积分10
47秒前
要减肥的蘑菇完成签到 ,获得积分10
48秒前
51秒前
mm完成签到 ,获得积分10
55秒前
思源应助o原来是草莓吖采纳,获得10
57秒前
dahong完成签到 ,获得积分10
57秒前
59秒前
woshibyu完成签到 ,获得积分10
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
留胡子的松完成签到 ,获得积分10
1分钟前
1分钟前
高高菠萝完成签到 ,获得积分10
1分钟前
xqh完成签到,获得积分10
1分钟前
小井盖完成签到 ,获得积分10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
1分钟前
骄傲慕尼黑完成签到,获得积分10
1分钟前
英吉利25发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347556
求助须知:如何正确求助?哪些是违规求助? 4481793
关于积分的说明 13948128
捐赠科研通 4380137
什么是DOI,文献DOI怎么找? 2406791
邀请新用户注册赠送积分活动 1399340
关于科研通互助平台的介绍 1372500