Modality preserving U-Net for segmentation of multimodal medical images

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 医学影像学 深度学习 图像分割 计算机视觉 模式识别(心理学) 哲学 语言学
作者
Xuan Zhang,Fan Zhang,Liang Xu,Shuwei Shen,Pengfei Shao,Mingzhai Sun,Hanjun Liu,Peng Yao,Ronald X. Xu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (8): 5242-5257 被引量:5
标识
DOI:10.21037/qims-22-1367
摘要

Recent advances in artificial intelligence and digital image processing have inspired the use of deep neural networks for segmentation tasks in multimodal medical imaging. Unlike natural images, multimodal medical images contain much richer information regarding different modal properties and therefore present more challenges for semantic segmentation. However, there is no report on systematic research that integrates multi-scaled and structured analysis of single-modal and multimodal medical images.We propose a deep neural network, named as Modality Preserving U-Net (MPU-Net), for modality-preserving analysis and segmentation of medical targets from multimodal medical images. The proposed MPU-Net consists of a modality preservation encoder (MPE) module that preserves the feature independency among the modalities and a modality fusion decoder (MFD) module that performs a multiscale feature fusion analysis for each modality in order to provide a rich feature representation for the final task. The effectiveness of such a single-modal preservation and multimodal fusion feature extraction approach is verified by multimodal segmentation experiments and an ablation study using brain tumor and prostate datasets from Medical Segmentation Decathlon (MSD).The segmentation experiments demonstrated the superiority of MPU-Net over other methods in the segmentation tasks for multimodal medical images. In the brain tumor segmentation tasks, the Dice scores (DSCs) for the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET) regions were 89.42%, 86.92%, and 84.59%, respectively. In the meanwhile, the 95% Hausdorff distance (HD95) results were 3.530, 4.899 and 2.555, respectively. In the prostate segmentation tasks, the DSCs for the peripheral zone (PZ) and the transitional zone (TZ) of the prostate were 71.20% and 90.38%, respectively. In the meanwhile, the 95% HD95 results were 6.367 and 4.766, respectively. The ablation study showed that the combination of single-modal preservation and multimodal fusion methods improved the performance of multimodal medical image feature analysis.In the segmentation tasks using brain tumor and prostate datasets, the MPU-Net method has achieved the improved performance in comparison with the conventional methods, indicating its potential application for other segmentation tasks in multimodal medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Wtt发布了新的文献求助10
1秒前
WWW完成签到,获得积分10
2秒前
脑洞疼应助十三采纳,获得10
2秒前
3秒前
3秒前
5秒前
6秒前
Howard发布了新的文献求助10
6秒前
7秒前
111完成签到,获得积分10
7秒前
8秒前
外向梦安完成签到,获得积分10
8秒前
klz发布了新的文献求助10
9秒前
9秒前
10秒前
罗罗罗完成签到,获得积分10
10秒前
科研通AI5应助斯文明杰采纳,获得10
11秒前
Antonio完成签到 ,获得积分10
11秒前
12秒前
韧迹发布了新的文献求助10
12秒前
乐乐应助傲娇的诗兰采纳,获得10
12秒前
liao完成签到,获得积分10
13秒前
周钦完成签到 ,获得积分10
15秒前
我的小k8完成签到,获得积分10
16秒前
禹听白完成签到,获得积分20
18秒前
瑞文发布了新的文献求助10
19秒前
19秒前
我的小k8发布了新的文献求助10
19秒前
小二郎应助lobster采纳,获得10
20秒前
雾让空山完成签到 ,获得积分10
21秒前
风中天宇完成签到,获得积分20
22秒前
钟鸿盛Domi发布了新的文献求助150
23秒前
23秒前
风趣凉面完成签到,获得积分10
24秒前
Charming完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Highway Capacity Manual 7th Edition 800
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4632518
求助须知:如何正确求助?哪些是违规求助? 4028771
关于积分的说明 12465728
捐赠科研通 3714956
什么是DOI,文献DOI怎么找? 2049858
邀请新用户注册赠送积分活动 1081447
科研通“疑难数据库(出版商)”最低求助积分说明 963800