Modality preserving U-Net for segmentation of multimodal medical images

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 医学影像学 深度学习 图像分割 计算机视觉 模式识别(心理学) 语言学 哲学
作者
Xuan Zhang,Fan Zhang,Liang Xu,Shuwei Shen,Pengfei Shao,Mingzhai Sun,Hanjun Liu,Peng Yao,Ronald X. Xu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (8): 5242-5257 被引量:5
标识
DOI:10.21037/qims-22-1367
摘要

Recent advances in artificial intelligence and digital image processing have inspired the use of deep neural networks for segmentation tasks in multimodal medical imaging. Unlike natural images, multimodal medical images contain much richer information regarding different modal properties and therefore present more challenges for semantic segmentation. However, there is no report on systematic research that integrates multi-scaled and structured analysis of single-modal and multimodal medical images.We propose a deep neural network, named as Modality Preserving U-Net (MPU-Net), for modality-preserving analysis and segmentation of medical targets from multimodal medical images. The proposed MPU-Net consists of a modality preservation encoder (MPE) module that preserves the feature independency among the modalities and a modality fusion decoder (MFD) module that performs a multiscale feature fusion analysis for each modality in order to provide a rich feature representation for the final task. The effectiveness of such a single-modal preservation and multimodal fusion feature extraction approach is verified by multimodal segmentation experiments and an ablation study using brain tumor and prostate datasets from Medical Segmentation Decathlon (MSD).The segmentation experiments demonstrated the superiority of MPU-Net over other methods in the segmentation tasks for multimodal medical images. In the brain tumor segmentation tasks, the Dice scores (DSCs) for the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET) regions were 89.42%, 86.92%, and 84.59%, respectively. In the meanwhile, the 95% Hausdorff distance (HD95) results were 3.530, 4.899 and 2.555, respectively. In the prostate segmentation tasks, the DSCs for the peripheral zone (PZ) and the transitional zone (TZ) of the prostate were 71.20% and 90.38%, respectively. In the meanwhile, the 95% HD95 results were 6.367 and 4.766, respectively. The ablation study showed that the combination of single-modal preservation and multimodal fusion methods improved the performance of multimodal medical image feature analysis.In the segmentation tasks using brain tumor and prostate datasets, the MPU-Net method has achieved the improved performance in comparison with the conventional methods, indicating its potential application for other segmentation tasks in multimodal medical images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助ZequnFan采纳,获得10
刚刚
zh123完成签到,获得积分10
刚刚
幽幽发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
甜甜晓露发布了新的文献求助10
3秒前
FOLLOW发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
asdfzxcv应助小张同学采纳,获得10
4秒前
4秒前
GSR发布了新的文献求助10
4秒前
5秒前
欣喜访冬给欣喜访冬的求助进行了留言
5秒前
qwer1234完成签到,获得积分10
6秒前
zts发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
YMing发布了新的文献求助10
7秒前
THM完成签到,获得积分10
7秒前
7秒前
8秒前
seventhcat完成签到,获得积分10
8秒前
9秒前
缓慢冬莲完成签到,获得积分10
9秒前
lit完成签到 ,获得积分10
9秒前
幽幽完成签到,获得积分10
9秒前
9秒前
小龙发布了新的文献求助10
9秒前
WR发布了新的文献求助10
10秒前
fhghhhjh发布了新的文献求助10
11秒前
脑洞疼应助老实的百招采纳,获得10
11秒前
慎独579完成签到,获得积分10
12秒前
牛奶草莓发布了新的文献求助10
12秒前
上官若男应助Jzag采纳,获得10
13秒前
干净凝梦发布了新的文献求助10
13秒前
酷波er应助十七采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643469
求助须知:如何正确求助?哪些是违规求助? 4761277
关于积分的说明 15020918
捐赠科研通 4801788
什么是DOI,文献DOI怎么找? 2567067
邀请新用户注册赠送积分活动 1524836
关于科研通互助平台的介绍 1484403