Modality preserving U-Net for segmentation of multimodal medical images

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 医学影像学 深度学习 图像分割 计算机视觉 模式识别(心理学) 语言学 哲学
作者
Xuan Zhang,Fan Zhang,Liang Xu,Shuwei Shen,Pengfei Shao,Mingzhai Sun,Hanjun Liu,Peng Yao,Ronald X. Xu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (8): 5242-5257 被引量:5
标识
DOI:10.21037/qims-22-1367
摘要

Recent advances in artificial intelligence and digital image processing have inspired the use of deep neural networks for segmentation tasks in multimodal medical imaging. Unlike natural images, multimodal medical images contain much richer information regarding different modal properties and therefore present more challenges for semantic segmentation. However, there is no report on systematic research that integrates multi-scaled and structured analysis of single-modal and multimodal medical images.We propose a deep neural network, named as Modality Preserving U-Net (MPU-Net), for modality-preserving analysis and segmentation of medical targets from multimodal medical images. The proposed MPU-Net consists of a modality preservation encoder (MPE) module that preserves the feature independency among the modalities and a modality fusion decoder (MFD) module that performs a multiscale feature fusion analysis for each modality in order to provide a rich feature representation for the final task. The effectiveness of such a single-modal preservation and multimodal fusion feature extraction approach is verified by multimodal segmentation experiments and an ablation study using brain tumor and prostate datasets from Medical Segmentation Decathlon (MSD).The segmentation experiments demonstrated the superiority of MPU-Net over other methods in the segmentation tasks for multimodal medical images. In the brain tumor segmentation tasks, the Dice scores (DSCs) for the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET) regions were 89.42%, 86.92%, and 84.59%, respectively. In the meanwhile, the 95% Hausdorff distance (HD95) results were 3.530, 4.899 and 2.555, respectively. In the prostate segmentation tasks, the DSCs for the peripheral zone (PZ) and the transitional zone (TZ) of the prostate were 71.20% and 90.38%, respectively. In the meanwhile, the 95% HD95 results were 6.367 and 4.766, respectively. The ablation study showed that the combination of single-modal preservation and multimodal fusion methods improved the performance of multimodal medical image feature analysis.In the segmentation tasks using brain tumor and prostate datasets, the MPU-Net method has achieved the improved performance in comparison with the conventional methods, indicating its potential application for other segmentation tasks in multimodal medical images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Neonoes完成签到 ,获得积分0
1秒前
jksg发布了新的文献求助10
2秒前
冷静的手套完成签到 ,获得积分10
2秒前
赘婿应助呼斯冷采纳,获得10
4秒前
nicholasgxz完成签到 ,获得积分10
5秒前
7秒前
bgt完成签到 ,获得积分10
9秒前
loyuanhao发布了新的文献求助10
12秒前
松林发布了新的文献求助30
13秒前
买小鼠大王完成签到,获得积分10
15秒前
15秒前
长点脑子行不行关注了科研通微信公众号
16秒前
kkdkg发布了新的文献求助10
17秒前
小马甲应助余额采纳,获得10
17秒前
Jay关注了科研通微信公众号
20秒前
呼斯冷发布了新的文献求助10
21秒前
任尔发布了新的文献求助10
22秒前
22秒前
22秒前
高高从云完成签到 ,获得积分10
23秒前
鲤鱼诗桃发布了新的文献求助10
23秒前
23秒前
情怀应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
可爱草丛应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
24秒前
达雨应助科研通管家采纳,获得10
24秒前
24秒前
cc应助科研通管家采纳,获得30
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
25秒前
shi hui应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
无极微光应助科研通管家采纳,获得20
25秒前
勤恳雅莉应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
BowieHuang应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560766
求助须知:如何正确求助?哪些是违规求助? 4646107
关于积分的说明 14677378
捐赠科研通 4587231
什么是DOI,文献DOI怎么找? 2516891
邀请新用户注册赠送积分活动 1490320
关于科研通互助平台的介绍 1461160