清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modality preserving U-Net for segmentation of multimodal medical images

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 医学影像学 深度学习 图像分割 计算机视觉 模式识别(心理学) 哲学 语言学
作者
Xuan Zhang,Fan Zhang,Liang Xu,Shuwei Shen,Pengfei Shao,Mingzhai Sun,Hanjun Liu,Peng Yao,Ronald X. Xu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (8): 5242-5257 被引量:5
标识
DOI:10.21037/qims-22-1367
摘要

Recent advances in artificial intelligence and digital image processing have inspired the use of deep neural networks for segmentation tasks in multimodal medical imaging. Unlike natural images, multimodal medical images contain much richer information regarding different modal properties and therefore present more challenges for semantic segmentation. However, there is no report on systematic research that integrates multi-scaled and structured analysis of single-modal and multimodal medical images.We propose a deep neural network, named as Modality Preserving U-Net (MPU-Net), for modality-preserving analysis and segmentation of medical targets from multimodal medical images. The proposed MPU-Net consists of a modality preservation encoder (MPE) module that preserves the feature independency among the modalities and a modality fusion decoder (MFD) module that performs a multiscale feature fusion analysis for each modality in order to provide a rich feature representation for the final task. The effectiveness of such a single-modal preservation and multimodal fusion feature extraction approach is verified by multimodal segmentation experiments and an ablation study using brain tumor and prostate datasets from Medical Segmentation Decathlon (MSD).The segmentation experiments demonstrated the superiority of MPU-Net over other methods in the segmentation tasks for multimodal medical images. In the brain tumor segmentation tasks, the Dice scores (DSCs) for the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET) regions were 89.42%, 86.92%, and 84.59%, respectively. In the meanwhile, the 95% Hausdorff distance (HD95) results were 3.530, 4.899 and 2.555, respectively. In the prostate segmentation tasks, the DSCs for the peripheral zone (PZ) and the transitional zone (TZ) of the prostate were 71.20% and 90.38%, respectively. In the meanwhile, the 95% HD95 results were 6.367 and 4.766, respectively. The ablation study showed that the combination of single-modal preservation and multimodal fusion methods improved the performance of multimodal medical image feature analysis.In the segmentation tasks using brain tumor and prostate datasets, the MPU-Net method has achieved the improved performance in comparison with the conventional methods, indicating its potential application for other segmentation tasks in multimodal medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
51秒前
123发布了新的文献求助10
55秒前
胡菲诺发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Jenny完成签到 ,获得积分10
1分钟前
123关闭了123文献求助
1分钟前
fanniezhao完成签到,获得积分20
2分钟前
QCB完成签到 ,获得积分10
2分钟前
加菲丰丰应助fanniezhao采纳,获得30
2分钟前
123发布了新的文献求助10
2分钟前
科研通AI5应助123采纳,获得10
2分钟前
激动的似狮完成签到,获得积分10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得150
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得150
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Fairy完成签到,获得积分10
4分钟前
Frank完成签到,获得积分10
4分钟前
火星的雪完成签到 ,获得积分0
4分钟前
脑洞疼应助xuan2022采纳,获得10
5分钟前
5分钟前
Kevin发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
白面包不吃鱼完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
ddd发布了新的文献求助10
6分钟前
Ji发布了新的文献求助30
6分钟前
月军完成签到 ,获得积分10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
桥西小河完成签到 ,获得积分10
7分钟前
qingshuizhiche完成签到,获得积分10
8分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5187204
求助须知:如何正确求助?哪些是违规求助? 4372086
关于积分的说明 13612872
捐赠科研通 4224995
什么是DOI,文献DOI怎么找? 2317321
邀请新用户注册赠送积分活动 1315975
关于科研通互助平台的介绍 1265421