Modality preserving U-Net for segmentation of multimodal medical images

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 医学影像学 深度学习 图像分割 计算机视觉 模式识别(心理学) 语言学 哲学
作者
Xuan Zhang,Fan Zhang,Liang Xu,Shuwei Shen,Pengfei Shao,Mingzhai Sun,Hanjun Liu,Peng Yao,Ronald X. Xu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (8): 5242-5257 被引量:5
标识
DOI:10.21037/qims-22-1367
摘要

Recent advances in artificial intelligence and digital image processing have inspired the use of deep neural networks for segmentation tasks in multimodal medical imaging. Unlike natural images, multimodal medical images contain much richer information regarding different modal properties and therefore present more challenges for semantic segmentation. However, there is no report on systematic research that integrates multi-scaled and structured analysis of single-modal and multimodal medical images.We propose a deep neural network, named as Modality Preserving U-Net (MPU-Net), for modality-preserving analysis and segmentation of medical targets from multimodal medical images. The proposed MPU-Net consists of a modality preservation encoder (MPE) module that preserves the feature independency among the modalities and a modality fusion decoder (MFD) module that performs a multiscale feature fusion analysis for each modality in order to provide a rich feature representation for the final task. The effectiveness of such a single-modal preservation and multimodal fusion feature extraction approach is verified by multimodal segmentation experiments and an ablation study using brain tumor and prostate datasets from Medical Segmentation Decathlon (MSD).The segmentation experiments demonstrated the superiority of MPU-Net over other methods in the segmentation tasks for multimodal medical images. In the brain tumor segmentation tasks, the Dice scores (DSCs) for the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET) regions were 89.42%, 86.92%, and 84.59%, respectively. In the meanwhile, the 95% Hausdorff distance (HD95) results were 3.530, 4.899 and 2.555, respectively. In the prostate segmentation tasks, the DSCs for the peripheral zone (PZ) and the transitional zone (TZ) of the prostate were 71.20% and 90.38%, respectively. In the meanwhile, the 95% HD95 results were 6.367 and 4.766, respectively. The ablation study showed that the combination of single-modal preservation and multimodal fusion methods improved the performance of multimodal medical image feature analysis.In the segmentation tasks using brain tumor and prostate datasets, the MPU-Net method has achieved the improved performance in comparison with the conventional methods, indicating its potential application for other segmentation tasks in multimodal medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静丹寒完成签到,获得积分10
1秒前
啊哈哈哈完成签到 ,获得积分10
1秒前
xiu_ye完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
852应助小坤同学采纳,获得10
3秒前
沉静丹寒发布了新的文献求助30
3秒前
77sucy发布了新的文献求助10
4秒前
慕青应助awaer采纳,获得10
4秒前
锡昱完成签到,获得积分10
4秒前
Jasper应助linmo采纳,获得10
5秒前
张雷举报花开富贵求助涉嫌违规
5秒前
wanci应助jyylrl采纳,获得10
5秒前
6秒前
MchemG应助科研通管家采纳,获得10
7秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
坦率的匪应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
1111应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
8秒前
MchemG应助科研通管家采纳,获得10
8秒前
8秒前
fd163c应助科研通管家采纳,获得10
8秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
大个应助科研通管家采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021