亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ground-Based Hyperspectral Image Surveillance System for Explosive Detection: Methods, Experiments, and Comparisons

高光谱成像 计算机科学 爆炸物 预处理器 人工智能 爆炸物探测 探测器 模式识别(心理学) 遥感 精确性和召回率 计算机视觉 电信 化学 有机化学 地质学
作者
Mustafa Kütük,İzlen Geneci,Okan Bilge Özdemir,Alper Koz,Okan Esentürk,Yasemin Yardımcı Çetin,A. Aydın Alatan
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 8747-8763 被引量:5
标识
DOI:10.1109/jstars.2023.3299730
摘要

Explosive detection is crucial for public safety and confidence. Among various solutions for this purpose, hyperspectral imaging (HSI) differs from its alternatives with its detection capability from standoff distances. However, the state of the art for such a technology is still significantly missing a complete technical and experimental framework for surveillance applications. In this paper, an end-to-end technical framework, which involves capturing, preprocessing, reflectance conversion, target detection, and performance evaluation stages, is proposed to reveal the potential of a ground-based hyperspectral image surveillance system for the detection of explosive traces. The proposed framework utilizes a shortwave infrared region (0.9-1.7μm), which covers the distinctive absorption characteristics of different explosives. Three classes of detection methods, namely index, signature, and learning-based methods are adapted to the proposed surveillance system. Their performances are compared over various experiments, which are specifically designed for granular and sprayed residues, fingerprint residues, and explosive traces on vehicles. The experiments reveal that the best method in terms of precision and recall performances is hybrid structure detector (HSD), which effectively combines signature-based detection with unmixing. While deep learning-based methods have also achieved satisfactory precision values, their low recall values for the moment have comparatively limited their usage for the high-risk cases. Although one of the main reasons for the current performances of deep learning methods is less data for learning, these performances for hyperspectral images can be increased with more data in the future as in other image applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔琪乔发布了新的文献求助30
1秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
隐形曼青应助喝粥阿旺采纳,获得10
37秒前
科研通AI2S应助乔琪乔采纳,获得30
48秒前
shadow完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
搞怪远侵发布了新的文献求助10
1分钟前
2分钟前
随性随缘随命完成签到 ,获得积分10
2分钟前
2分钟前
喝粥阿旺发布了新的文献求助10
2分钟前
坦率的乐蕊完成签到 ,获得积分10
2分钟前
嗯哼应助TOOTOO_J采纳,获得20
3分钟前
KoitoYuu发布了新的文献求助10
3分钟前
pinklay完成签到 ,获得积分10
3分钟前
搞怪远侵发布了新的文献求助10
3分钟前
搞怪远侵完成签到,获得积分10
3分钟前
KoitoYuu完成签到,获得积分10
3分钟前
dxftx发布了新的文献求助20
3分钟前
科研通AI2S应助醉熏的青筠采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
hotongue发布了新的文献求助10
4分钟前
hotongue发布了新的文献求助10
4分钟前
4分钟前
醉熏的青筠完成签到,获得积分20
4分钟前
hotongue完成签到,获得积分10
4分钟前
4分钟前
月军完成签到,获得积分10
5分钟前
Yifan2024完成签到,获得积分10
5分钟前
Sylvia_J完成签到 ,获得积分10
5分钟前
外向半青完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
医平青云完成签到 ,获得积分10
7分钟前
可爱的函函应助chengll采纳,获得10
7分钟前
孟筱完成签到,获得积分10
8分钟前
彭于晏应助xiongyi采纳,获得10
8分钟前
8分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238987
求助须知:如何正确求助?哪些是违规求助? 2884295
关于积分的说明 8232889
捐赠科研通 2552320
什么是DOI,文献DOI怎么找? 1380665
科研通“疑难数据库(出版商)”最低求助积分说明 649068
邀请新用户注册赠送积分活动 624769