重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Spread and control of medical rumors in a social network: A generalized diffusion model with a highly asymmetric network structure

谣言 计算机科学 节点(物理) 控制(管理) 数学优化 社交网络(社会语言学) 非线性系统 政府(语言学) 运筹学 社会化媒体 数学 人工智能 法学 语言学 哲学 物理 结构工程 量子力学 万维网 政治学 工程类
作者
Chen‐Nan Liao,Ying‐Ju Chen,Vincent Chen
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (11): 3683-3698 被引量:1
标识
DOI:10.1111/poms.14057
摘要

Medical rumors have become a threat to modern society. To study the spread and control of rumors, nonlinear differential equations modeling with the well‐mixed assumption is commonly used. However, this approach ignores the underlying network structure which plays an important role in information spreading. We establish a generalized differential equations model to study the spread and control of medical rumors in a highly asymmetric social network. In our model, each node represents a group of people and a “weighted” and “directed” network describes the communications between these nodes. This network can be generated from real‐world data by community detection algorithms. We provide methods to numerically calculate the final size of a rumor in each node and its derivatives with respect to each parameter. With these methods, if the government has resources to influence the parameters subject to certain constraints or cost functions, one can obtain the optimal resources allocation easily through nonlinear programming algorithms. We show that the implications on the government's resources allocation from the well‐mixed special case in the literature or conventional wisdom may become inapplicable in the general situation. Therefore, the underlying network should not be ignored. Because the final size of a medical rumor is not always the best measure of its damage, we extend our results to a wide class of objectives and show that different objectives result in very different implications. While the lack of a rule of thumb may sound negative, our flexible framework provides a powerful workhorse for interested parties to work out the details in their specific situations. Finally, we provide a sufficient condition for no outbreak of rumors. This condition can serve as a heuristic that a government with abundant resources can use to prevent the outbreak of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平安顺遂发布了新的文献求助10
刚刚
1秒前
李健应助yqf采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
莉莉斯发布了新的文献求助30
2秒前
zhq发布了新的文献求助10
2秒前
2秒前
aki应助乌鸡国国王采纳,获得10
2秒前
王易云发布了新的文献求助10
3秒前
yanj520925发布了新的文献求助10
3秒前
小二郎应助迅速如柏采纳,获得10
3秒前
3秒前
小粉丝完成签到,获得积分10
4秒前
5秒前
科研通AI6应助幸福乐蕊采纳,获得10
6秒前
6秒前
xy发布了新的文献求助10
7秒前
李健应助111采纳,获得10
7秒前
7秒前
7秒前
领导范儿应助Li采纳,获得10
8秒前
汪格森发布了新的文献求助10
10秒前
10秒前
郭素玲发布了新的文献求助10
10秒前
jing发布了新的文献求助30
11秒前
xueyu发布了新的文献求助10
11秒前
风清扬发布了新的文献求助30
11秒前
哭泣灯泡应助ll采纳,获得10
12秒前
kuoh224发布了新的文献求助10
15秒前
15秒前
16秒前
Tonson应助杆杆采纳,获得10
16秒前
17秒前
18秒前
FashionBoy应助汪格森采纳,获得10
18秒前
落尘完成签到,获得积分10
18秒前
SciGPT应助66666采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707