Spread and control of medical rumors in a social network: A generalized diffusion model with a highly asymmetric network structure

谣言 计算机科学 节点(物理) 控制(管理) 数学优化 社交网络(社会语言学) 非线性系统 政府(语言学) 运筹学 社会化媒体 数学 人工智能 法学 语言学 哲学 物理 结构工程 量子力学 万维网 政治学 工程类
作者
Chen‐Nan Liao,Ying‐Ju Chen,Vincent Chen
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (11): 3683-3698
标识
DOI:10.1111/poms.14057
摘要

Medical rumors have become a threat to modern society. To study the spread and control of rumors, nonlinear differential equations modeling with the well‐mixed assumption is commonly used. However, this approach ignores the underlying network structure which plays an important role in information spreading. We establish a generalized differential equations model to study the spread and control of medical rumors in a highly asymmetric social network. In our model, each node represents a group of people and a “weighted” and “directed” network describes the communications between these nodes. This network can be generated from real‐world data by community detection algorithms. We provide methods to numerically calculate the final size of a rumor in each node and its derivatives with respect to each parameter. With these methods, if the government has resources to influence the parameters subject to certain constraints or cost functions, one can obtain the optimal resources allocation easily through nonlinear programming algorithms. We show that the implications on the government's resources allocation from the well‐mixed special case in the literature or conventional wisdom may become inapplicable in the general situation. Therefore, the underlying network should not be ignored. Because the final size of a medical rumor is not always the best measure of its damage, we extend our results to a wide class of objectives and show that different objectives result in very different implications. While the lack of a rule of thumb may sound negative, our flexible framework provides a powerful workhorse for interested parties to work out the details in their specific situations. Finally, we provide a sufficient condition for no outbreak of rumors. This condition can serve as a heuristic that a government with abundant resources can use to prevent the outbreak of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bmt关闭了bmt文献求助
刚刚
所所应助wang采纳,获得10
刚刚
刚刚
asdfghjkl发布了新的文献求助10
1秒前
1秒前
刻苦的晓蕾完成签到,获得积分10
1秒前
zhl完成签到,获得积分10
1秒前
愛迪完成签到,获得积分10
2秒前
gy关闭了gy文献求助
2秒前
脆脆Shark完成签到,获得积分10
4秒前
坚强白凝完成签到,获得积分10
7秒前
8秒前
zho发布了新的文献求助10
8秒前
chizhi完成签到,获得积分10
10秒前
11秒前
希望天下0贩的0应助花花采纳,获得10
11秒前
q792309106发布了新的文献求助10
12秒前
小马甲应助杜兰特采纳,获得10
14秒前
CipherSage应助zxcv采纳,获得10
14秒前
15秒前
天天快乐应助安生生采纳,获得10
16秒前
小马宝莉完成签到,获得积分10
19秒前
思源应助曹松柏采纳,获得10
19秒前
20秒前
田様应助a123采纳,获得10
21秒前
小新发布了新的文献求助20
22秒前
22秒前
核桃发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
阔达冰兰发布了新的文献求助10
26秒前
26秒前
27秒前
中和皇极应助曹沛岚采纳,获得10
28秒前
安生生发布了新的文献求助10
28秒前
花花发布了新的文献求助10
29秒前
杜兰特发布了新的文献求助10
30秒前
31秒前
阿槿发布了新的文献求助20
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702