Spread and control of medical rumors in a social network: A generalized diffusion model with a highly asymmetric network structure

谣言 计算机科学 节点(物理) 控制(管理) 数学优化 社交网络(社会语言学) 非线性系统 政府(语言学) 运筹学 社会化媒体 数学 人工智能 法学 量子力学 语言学 结构工程 物理 工程类 万维网 哲学 政治学
作者
Chen‐Nan Liao,Ying‐Ju Chen,Vincent Chen
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (11): 3683-3698 被引量:1
标识
DOI:10.1111/poms.14057
摘要

Medical rumors have become a threat to modern society. To study the spread and control of rumors, nonlinear differential equations modeling with the well‐mixed assumption is commonly used. However, this approach ignores the underlying network structure which plays an important role in information spreading. We establish a generalized differential equations model to study the spread and control of medical rumors in a highly asymmetric social network. In our model, each node represents a group of people and a “weighted” and “directed” network describes the communications between these nodes. This network can be generated from real‐world data by community detection algorithms. We provide methods to numerically calculate the final size of a rumor in each node and its derivatives with respect to each parameter. With these methods, if the government has resources to influence the parameters subject to certain constraints or cost functions, one can obtain the optimal resources allocation easily through nonlinear programming algorithms. We show that the implications on the government's resources allocation from the well‐mixed special case in the literature or conventional wisdom may become inapplicable in the general situation. Therefore, the underlying network should not be ignored. Because the final size of a medical rumor is not always the best measure of its damage, we extend our results to a wide class of objectives and show that different objectives result in very different implications. While the lack of a rule of thumb may sound negative, our flexible framework provides a powerful workhorse for interested parties to work out the details in their specific situations. Finally, we provide a sufficient condition for no outbreak of rumors. This condition can serve as a heuristic that a government with abundant resources can use to prevent the outbreak of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助独特的自中采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
4秒前
大模型应助yuyuyuyuyuyuyu采纳,获得10
4秒前
小蘑菇应助EASA采纳,获得10
4秒前
青山完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
今后应助群山采纳,获得10
5秒前
5秒前
5秒前
5秒前
zy发布了新的文献求助10
6秒前
6秒前
Yz_Dai发布了新的文献求助10
6秒前
6秒前
打打应助科研的光采纳,获得10
6秒前
Yeong发布了新的文献求助10
7秒前
zzj完成签到,获得积分10
7秒前
7秒前
维克托发布了新的文献求助10
8秒前
枫cxf163发布了新的文献求助10
8秒前
9秒前
勾勾完成签到 ,获得积分10
9秒前
昵称发布了新的文献求助50
9秒前
Owen应助132采纳,获得10
9秒前
明理鱼发布了新的文献求助10
9秒前
研友_VZG7GZ应助11采纳,获得10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
欣喜的听枫完成签到,获得积分10
11秒前
z.发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785