Spread and control of medical rumors in a social network: A generalized diffusion model with a highly asymmetric network structure

谣言 计算机科学 节点(物理) 控制(管理) 数学优化 社交网络(社会语言学) 非线性系统 政府(语言学) 运筹学 社会化媒体 数学 人工智能 法学 语言学 哲学 物理 结构工程 量子力学 万维网 政治学 工程类
作者
Chen‐Nan Liao,Ying‐Ju Chen,Vincent Chen
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (11): 3683-3698
标识
DOI:10.1111/poms.14057
摘要

Medical rumors have become a threat to modern society. To study the spread and control of rumors, nonlinear differential equations modeling with the well‐mixed assumption is commonly used. However, this approach ignores the underlying network structure which plays an important role in information spreading. We establish a generalized differential equations model to study the spread and control of medical rumors in a highly asymmetric social network. In our model, each node represents a group of people and a “weighted” and “directed” network describes the communications between these nodes. This network can be generated from real‐world data by community detection algorithms. We provide methods to numerically calculate the final size of a rumor in each node and its derivatives with respect to each parameter. With these methods, if the government has resources to influence the parameters subject to certain constraints or cost functions, one can obtain the optimal resources allocation easily through nonlinear programming algorithms. We show that the implications on the government's resources allocation from the well‐mixed special case in the literature or conventional wisdom may become inapplicable in the general situation. Therefore, the underlying network should not be ignored. Because the final size of a medical rumor is not always the best measure of its damage, we extend our results to a wide class of objectives and show that different objectives result in very different implications. While the lack of a rule of thumb may sound negative, our flexible framework provides a powerful workhorse for interested parties to work out the details in their specific situations. Finally, we provide a sufficient condition for no outbreak of rumors. This condition can serve as a heuristic that a government with abundant resources can use to prevent the outbreak of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
didi完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
吉宝完成签到,获得积分10
1秒前
finx发布了新的文献求助10
2秒前
3秒前
lxt完成签到,获得积分10
3秒前
Jo发布了新的文献求助20
3秒前
大模型应助秀丽的初柔采纳,获得10
4秒前
gyx完成签到 ,获得积分10
4秒前
4秒前
4秒前
小于发布了新的文献求助10
4秒前
卡沙巴完成签到,获得积分10
6秒前
科研通AI5应助tatai采纳,获得10
6秒前
6秒前
7秒前
酸辣小瓜发布了新的文献求助10
7秒前
吉宝发布了新的文献求助10
7秒前
明理如凡完成签到,获得积分10
8秒前
8秒前
深情安青应助zimo采纳,获得10
9秒前
10秒前
puhu完成签到,获得积分10
10秒前
上官若男应助快乐的海亦采纳,获得10
10秒前
瓶里岑完成签到,获得积分10
10秒前
10秒前
桐桐应助静默向上采纳,获得10
10秒前
洛杉矶的奥斯卡完成签到,获得积分10
10秒前
李健的小迷弟应助简易采纳,获得80
10秒前
小心薛了你完成签到,获得积分10
11秒前
踏实的白枫完成签到,获得积分10
11秒前
ntrip完成签到,获得积分10
13秒前
雨堂完成签到 ,获得积分10
13秒前
13秒前
ding应助Jo采纳,获得10
13秒前
郝煜祺发布了新的文献求助10
13秒前
ldy发布了新的文献求助10
14秒前
陈甸甸发布了新的文献求助10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746471
求助须知:如何正确求助?哪些是违规求助? 3289359
关于积分的说明 10064159
捐赠科研通 3005740
什么是DOI,文献DOI怎么找? 1650360
邀请新用户注册赠送积分活动 785858
科研通“疑难数据库(出版商)”最低求助积分说明 751296