Spread and control of medical rumors in a social network: A generalized diffusion model with a highly asymmetric network structure

谣言 计算机科学 节点(物理) 控制(管理) 数学优化 社交网络(社会语言学) 非线性系统 政府(语言学) 运筹学 社会化媒体 数学 人工智能 法学 语言学 哲学 物理 结构工程 量子力学 万维网 政治学 工程类
作者
Chen‐Nan Liao,Ying‐Ju Chen,Vincent Chen
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (11): 3683-3698 被引量:1
标识
DOI:10.1111/poms.14057
摘要

Medical rumors have become a threat to modern society. To study the spread and control of rumors, nonlinear differential equations modeling with the well‐mixed assumption is commonly used. However, this approach ignores the underlying network structure which plays an important role in information spreading. We establish a generalized differential equations model to study the spread and control of medical rumors in a highly asymmetric social network. In our model, each node represents a group of people and a “weighted” and “directed” network describes the communications between these nodes. This network can be generated from real‐world data by community detection algorithms. We provide methods to numerically calculate the final size of a rumor in each node and its derivatives with respect to each parameter. With these methods, if the government has resources to influence the parameters subject to certain constraints or cost functions, one can obtain the optimal resources allocation easily through nonlinear programming algorithms. We show that the implications on the government's resources allocation from the well‐mixed special case in the literature or conventional wisdom may become inapplicable in the general situation. Therefore, the underlying network should not be ignored. Because the final size of a medical rumor is not always the best measure of its damage, we extend our results to a wide class of objectives and show that different objectives result in very different implications. While the lack of a rule of thumb may sound negative, our flexible framework provides a powerful workhorse for interested parties to work out the details in their specific situations. Finally, we provide a sufficient condition for no outbreak of rumors. This condition can serve as a heuristic that a government with abundant resources can use to prevent the outbreak of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
思茶念酒完成签到 ,获得积分10
6秒前
feilong完成签到,获得积分10
7秒前
袁温柔完成签到 ,获得积分10
10秒前
儒雅沛凝完成签到 ,获得积分10
11秒前
陈好好完成签到 ,获得积分10
11秒前
淡然完成签到 ,获得积分10
11秒前
风清扬应助jackhlj采纳,获得30
14秒前
书生完成签到,获得积分10
16秒前
Scheduling完成签到 ,获得积分10
18秒前
江三村完成签到 ,获得积分0
18秒前
量子星尘发布了新的文献求助10
19秒前
DrLin完成签到 ,获得积分10
20秒前
zxy应助唐泽雪穗采纳,获得20
20秒前
YBR完成签到 ,获得积分10
21秒前
ARIA完成签到 ,获得积分10
21秒前
听寒完成签到,获得积分10
21秒前
淞淞于我完成签到 ,获得积分10
24秒前
调皮的笑阳完成签到 ,获得积分10
25秒前
SciEngineerX完成签到,获得积分10
25秒前
桃子味完成签到,获得积分10
26秒前
NINI完成签到 ,获得积分10
26秒前
26秒前
26秒前
杜钿湄完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助50
29秒前
唐泽雪穗发布了新的文献求助20
35秒前
宇宙飞船2436完成签到,获得积分10
37秒前
lulu完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助150
39秒前
DiJia完成签到 ,获得积分10
41秒前
jackhlj完成签到,获得积分10
46秒前
震动的鹏飞完成签到 ,获得积分10
47秒前
cathyliu完成签到,获得积分10
50秒前
Hao完成签到,获得积分10
52秒前
54秒前
嗷呜小老虎WHY完成签到 ,获得积分10
58秒前
58秒前
毛毛完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066763
求助须知:如何正确求助?哪些是违规求助? 4288695
关于积分的说明 13360408
捐赠科研通 4108099
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254944
关于科研通互助平台的介绍 1187373