Evaluation of the Ability of AlphaFold to Predict the Three-Dimensional Structures of Antibodies and Epitopes

表位 对接(动物) 化学 互补性(分子生物学) 计算生物学 互补决定区 结晶学 抗体 肽序列 生物 生物化学 遗传学 医学 护理部 基因
作者
Ksenia Polonsky,Tal Pupko,Natalia T. Freund
出处
期刊:Journal of Immunology [The American Association of Immunologists]
卷期号:211 (10): 1578-1588 被引量:8
标识
DOI:10.4049/jimmunol.2300150
摘要

Abstract Being able to accurately predict the three-dimensional structure of an Ab can facilitate Ab characterization and epitope prediction, with important diagnostic and clinical implications. In this study, we evaluated the ability of AlphaFold to predict the structures of 222 recently published, high-resolution Fab H and L chain structures of Abs from different species directed against different Ags. We show that although the overall Ab prediction quality is in line with the results of CASP14, regions such as the complementarity-determining regions (CDRs) of the H chain, which are prone to higher variation, are predicted less accurately. Moreover, we discovered that AlphaFold mispredicts the bending angles between the variable and constant domains. To evaluate the ability of AlphaFold to model Ab–Ag interactions based only on sequence, we used AlphaFold-Multimer in combination with ZDOCK to predict the structures of 26 known Ab–Ag complexes. ZDOCK, which was applied on bound components of both the Ab and the Ag, succeeded in assembling 11 complexes, whereas AlphaFold succeeded in predicting only 2 of 26 models, with significant deviations in the docking contacts predicted in the rest of the molecules. Within the 11 complexes that were successfully predicted by ZDOCK, 9 involved short-peptide Ags (18-mer or less), whereas only 2 were complexes of Ab with a full-length protein. Docking of modeled unbound Ab and Ag was unsuccessful. In summary, our study provides important information about the abilities and limitations of using AlphaFold to predict Ab–Ag interactions and suggests areas for possible improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zq1992nl完成签到,获得积分10
1秒前
KKKKK完成签到,获得积分20
1秒前
Clover04完成签到,获得积分10
2秒前
Robertchen完成签到,获得积分10
2秒前
2秒前
JamesPei应助weddcf采纳,获得10
2秒前
3秒前
丿夜幕灬降临丨完成签到,获得积分10
5秒前
Yasong完成签到 ,获得积分10
5秒前
俭朴山兰完成签到,获得积分10
5秒前
凡帝完成签到,获得积分10
6秒前
pH7完成签到,获得积分10
6秒前
w婷完成签到 ,获得积分10
6秒前
nyfz2002发布了新的文献求助10
7秒前
田李君发布了新的文献求助10
8秒前
523关闭了523文献求助
8秒前
鸿鹄在天涯完成签到 ,获得积分10
8秒前
luha完成签到,获得积分10
8秒前
苹果白凡完成签到,获得积分10
9秒前
sunyafei完成签到,获得积分10
9秒前
花痴的易真完成签到,获得积分10
9秒前
xiaohcuan712发布了新的文献求助200
9秒前
10秒前
jinyu发布了新的文献求助10
11秒前
huangJP完成签到,获得积分20
12秒前
管理想完成签到,获得积分10
13秒前
Akim应助kkkkkkk_采纳,获得10
13秒前
Nico多多看paper完成签到,获得积分10
14秒前
14秒前
guoguo完成签到,获得积分10
15秒前
但是完成签到,获得积分10
15秒前
宇智波白哉完成签到,获得积分10
15秒前
zho关闭了zho文献求助
15秒前
weddcf发布了新的文献求助10
15秒前
的呀呀完成签到,获得积分10
15秒前
16秒前
义气莫茗完成签到,获得积分10
16秒前
赘婿应助boom采纳,获得10
17秒前
17秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711621
捐赠科研通 2427558
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169