Nonlinear WEC modeling using Sparse Identification of Nonlinear Dynamics (SINDy)

非线性系统 线性化 计算流体力学 计算机科学 系统标识 控制理论(社会学) 颂歌 运动方程 应用数学 数学 物理 经典力学 机械 人工智能 数据建模 控制(管理) 量子力学 数据库
作者
Brittany Lydon,Brian Polagye,Steven L. Brunton
标识
DOI:10.36688/ewtec-2023-383
摘要

Modeling oscillating surge wave energy converter (OSWEC) systems to accurately predict their behavior has been a notoriously difficult challenge for the wave energy field. This is particularly challenging in realistic sea states where nonlinear WEC dynamics are common due to complex fluid-structure interaction, breaking waves, and other phenomena. Common modeling techniques for OSWECs include using potential flow theory to linearize the governing equations and ease computations, or using CFD to solve the full Navier-Stokes equations coupled with rigid body motion. However, both of these options have significant limitations. Potential flow theory breaks down in realistic sea conditions where nonlinear WEC dynamics are present, and CFD is often too computationally expensive for many applications such as real-time state prediction and optimal control, two areas of active research in the wave energy field. In particular, OSWEC dynamics are dominated by diffractive and viscous forces, often making common assumptions and linearization approximations (including small-body approximations) unreasonable, and CFD computationally intractable. To bridge this gap in modeling methods, we propose using Sparse Identification of Nonlinear Dynamics (SINDy) to build nonlinear reduced-order models (ROMs) that describe OSWEC behavior in response to large-amplitude regular waves. SINDy is an equation-free, data-driven algorithm that identifies dominant nonlinear functions present in system state dynamics using a library of nonlinear functions created from time series measurement data. The result is an ordinary differential equation (ODE) in time that can be solved from an initial condition to model and predict time behavior of the states. SINDy is parsimonious, meaning it uses a sparsity-promoting hyperparameter with the goal of only including the minimum number of terms to capture dominant dynamics, resulting in interpretable and generalizable results that are not overfit to the data. Using the discovered ROMs and integrating in time, not only can SINDy provide time series models and future state predictions of OSWEC dynamics, it can also give insights into which variables are critical in describing the underlying dynamics of the state. In this study, we use SINDy to describe the nonlinear dynamics of a lab-scale OSWEC in a wave tank subjected to large-amplitude regular waves. We use nonlinear simulation data to generate kinematic, force, and torque data and use it as input to SINDy to identify ODEs that describe the measurement variables in time. We then integrate the ODEs to recreate the time series as well as predict future system behavior. We directly compare the resulting time series to the original data input to assess the accuracy of the SINDy model. We also interpret the dominant terms in the ODEs to gain insight on underlying mechanisms of the observed nonlinearity. Early results show SINDy is a promising tool for modeling nonlinear OSWEC dynamics. We are able to build ROMs for variables such as angular kinematics and the moment about the hinge that generate an accurate recreation of data measurements. We found strong dominance in cubic and quintic terms of the ROMs, suggesting higher-order nonlinearities in the system dynamics. These findings inspire future work in identifying underlying mechanisms driving nonlinearity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shirley完成签到,获得积分10
刚刚
1秒前
FashionBoy应助创死全世界采纳,获得10
1秒前
後zgw完成签到,获得积分10
2秒前
SONG完成签到,获得积分10
4秒前
共享精神应助chun采纳,获得10
4秒前
是媛媛完成签到,获得积分10
5秒前
深情安青应助biowzf采纳,获得10
5秒前
酷波er应助yylm采纳,获得10
6秒前
lalala发布了新的文献求助10
6秒前
我是老大应助qichen采纳,获得10
6秒前
6秒前
杜巧巧完成签到,获得积分10
7秒前
你好完成签到,获得积分10
8秒前
9秒前
李爱国应助坤仔采纳,获得30
9秒前
Cloud应助TS采纳,获得30
11秒前
12秒前
12秒前
13秒前
13秒前
小蘑菇应助竞鹤采纳,获得10
13秒前
精明半双完成签到,获得积分10
13秒前
bjb1999完成签到,获得积分10
13秒前
16秒前
斯文败类应助xgx984采纳,获得10
18秒前
瞬华发布了新的文献求助10
19秒前
19秒前
21秒前
kiball完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
23秒前
安然完成签到,获得积分10
23秒前
chun发布了新的文献求助10
23秒前
24秒前
务实静槐关注了科研通微信公众号
25秒前
CY88发布了新的文献求助10
25秒前
徐小哼完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157630
求助须知:如何正确求助?哪些是违规求助? 2808948
关于积分的说明 7879413
捐赠科研通 2467414
什么是DOI,文献DOI怎么找? 1313449
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919