Video Frame Interpolation With Many-to-Many Splatting and Spatial Selective Refinement

计算机科学 双线性插值 像素 插值(计算机图形学) 人工智能 计算机视觉 图像缩放 运动插值 帧(网络) 图像扭曲 算法 视频跟踪 图像处理 图像(数学) 视频处理 块匹配算法 电信
作者
Peng Hu,Simon Niklaus,Lu Zhang,Stan Sclaroff,Kate Saenko
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tpami.2023.3327092
摘要

In this work, we first propose a fully differentiable Many-to-Many (M2M) splatting framework to interpolate frames efficiently. Given a frame pair, we estimate multiple bidirectional flows to directly forward warp the pixels to the desired time step before fusing any overlapping pixels. In doing so, each source pixel renders multiple target pixels and each target pixel can be synthesized from a larger area of visual context, establishing a many-to-many splatting scheme with robustness to undesirable artifacts. For each input frame pair, M2M has a minuscule computational overhead when interpolating an arbitrary number of in-between frames, hence achieving fast multi-frame interpolation. However, directly warping and fusing pixels in the intensity domain is sensitive to the quality of motion estimation and may suffer from less effective representation capacity. To improve interpolation accuracy, we further extend an M2M++ framework by introducing a flexible Spatial Selective Refinement (SSR) component, which allows for trading computational efficiency for interpolation quality and vice versa. Instead of refining the entire interpolated frame, SSR only processes difficult regions selected under the guidance of an estimated error map, thereby avoiding redundant computation. Evaluation on multiple benchmark datasets shows that our method is able to improve the efficiency while maintaining competitive video interpolation quality, and it can be adjusted to use more or less compute as needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihuanmoon发布了新的文献求助10
刚刚
大民王发布了新的文献求助10
1秒前
1秒前
搬砖民工完成签到,获得积分10
1秒前
1秒前
爆米花应助zc采纳,获得10
2秒前
3秒前
3秒前
Stella应助Sindy采纳,获得30
3秒前
MQL完成签到,获得积分10
3秒前
rebecka发布了新的文献求助10
3秒前
迪迦王发布了新的文献求助10
4秒前
SciGPT应助盛夏采纳,获得10
5秒前
JamesPei应助lllll77采纳,获得10
5秒前
今后应助忧郁寻冬采纳,获得10
5秒前
lcw发布了新的文献求助10
6秒前
KK发布了新的文献求助10
6秒前
6秒前
果冻发布了新的文献求助10
6秒前
蓝桥易乞发布了新的文献求助10
6秒前
科研通AI6应助可爱的山竹采纳,获得10
6秒前
BowieHuang应助坚定自信采纳,获得10
7秒前
7秒前
专注芾完成签到,获得积分10
7秒前
7秒前
nini爱科研发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
冷傲迎梦发布了新的文献求助10
10秒前
沉静的映秋完成签到,获得积分10
10秒前
10秒前
pangsummer完成签到,获得积分10
10秒前
10秒前
11秒前
领导范儿应助O椰采纳,获得10
11秒前
专注芾发布了新的文献求助10
11秒前
科研通AI2S应助MM采纳,获得10
11秒前
英姑应助赵浩杰采纳,获得10
12秒前
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581313
求助须知:如何正确求助?哪些是违规求助? 4665766
关于积分的说明 14758178
捐赠科研通 4607617
什么是DOI,文献DOI怎么找? 2528305
邀请新用户注册赠送积分活动 1497589
关于科研通互助平台的介绍 1466474