Video Frame Interpolation With Many-to-Many Splatting and Spatial Selective Refinement

计算机科学 双线性插值 像素 插值(计算机图形学) 人工智能 计算机视觉 图像缩放 运动插值 帧(网络) 图像扭曲 算法 视频跟踪 图像处理 图像(数学) 视频处理 块匹配算法 电信
作者
Peng Hu,Simon Niklaus,Lu Zhang,Stan Sclaroff,Kate Saenko
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tpami.2023.3327092
摘要

In this work, we first propose a fully differentiable Many-to-Many (M2M) splatting framework to interpolate frames efficiently. Given a frame pair, we estimate multiple bidirectional flows to directly forward warp the pixels to the desired time step before fusing any overlapping pixels. In doing so, each source pixel renders multiple target pixels and each target pixel can be synthesized from a larger area of visual context, establishing a many-to-many splatting scheme with robustness to undesirable artifacts. For each input frame pair, M2M has a minuscule computational overhead when interpolating an arbitrary number of in-between frames, hence achieving fast multi-frame interpolation. However, directly warping and fusing pixels in the intensity domain is sensitive to the quality of motion estimation and may suffer from less effective representation capacity. To improve interpolation accuracy, we further extend an M2M++ framework by introducing a flexible Spatial Selective Refinement (SSR) component, which allows for trading computational efficiency for interpolation quality and vice versa. Instead of refining the entire interpolated frame, SSR only processes difficult regions selected under the guidance of an estimated error map, thereby avoiding redundant computation. Evaluation on multiple benchmark datasets shows that our method is able to improve the efficiency while maintaining competitive video interpolation quality, and it can be adjusted to use more or less compute as needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来自3602完成签到,获得积分10
刚刚
哇咔咔发布了新的文献求助10
刚刚
dayuernihao发布了新的文献求助10
刚刚
001发布了新的文献求助10
刚刚
Johnny完成签到,获得积分10
刚刚
2秒前
Johnny发布了新的文献求助10
3秒前
4秒前
WHH完成签到,获得积分20
4秒前
忧伤的大壮完成签到,获得积分10
5秒前
思源应助qwwer采纳,获得10
5秒前
踏实绮露完成签到 ,获得积分10
5秒前
minkuuuuuuu应助lvzhechen采纳,获得10
6秒前
6秒前
生鱼安乐完成签到,获得积分10
6秒前
6秒前
Courageous发布了新的文献求助10
7秒前
在水一方应助dawn采纳,获得10
8秒前
顾矜应助jiangsu20采纳,获得10
8秒前
充电宝应助陈冲采纳,获得10
9秒前
Yan发布了新的文献求助10
9秒前
Dong完成签到,获得积分10
9秒前
优秀荔枝完成签到,获得积分10
10秒前
Hua完成签到 ,获得积分10
12秒前
bkagyin应助WHH采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
李爱国应助xpeng采纳,获得10
14秒前
14秒前
Akim应助专一的摩托车采纳,获得10
14秒前
脑洞疼应助李四采纳,获得10
15秒前
15秒前
jstss完成签到,获得积分20
15秒前
研友_VZG7GZ应助陌上之心采纳,获得10
17秒前
17秒前
yuwan完成签到,获得积分10
18秒前
内向翰完成签到,获得积分10
18秒前
嗯哼发布了新的文献求助10
19秒前
666发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913