Stroke Classification with Microwave Signals using Explainable Wavelet Convolutional Neural Network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 小波 小波变换 噪音(视频) 微波成像 模态(人机交互) 人工神经网络 计算机视觉 微波食品加热 图像(数学) 电信
作者
Sazid Hasan,Ali Zamani,Aida Brankovic,Konstanty Bialkowski,Amin Abbosh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/jbhi.2023.3327296
摘要

Stroke is one of the leading causes of death and disability. To address this challenge, microwave imaging has been proposed as a portable medical imaging modality. However, accurate stroke classification using microwave signals is still an open challenge. In addition, identified features of microwave signals used for stroke classification need to be linked back to the original data. This work attempts to address these issues by proposing a wavelet convolutional neural network (CNN), which combines multiresolution analysis and CNN to learn distinctive patterns in the scalogram for accurate classification. A game theoretic approach is used to explain the model and indicate distinctive features for discriminating stroke types. The proposed algorithm is tested in simulation and experiments. Different types of noise and manufacturing tolerances are modeled using data collected from healthy human trials and added to the simulation data to bridge the gap between the simulation and real-life data. The achieved classification accuracy using the proposed method ranges from 81.7% for 3D simulations to 95.7% for lab experiments using simple head phantoms. Obtained explanations using the method indicate the relevance of wavelet coefficients on frequencies 0.95-1.45 GHz and the time slot of 1.3 to 1.7 ns for distinguishing ischemic from hemorrhagic strokes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lynn怯霜静完成签到,获得积分10
刚刚
NexusExplorer应助王王采纳,获得10
1秒前
马仕达完成签到,获得积分10
1秒前
莫1031完成签到 ,获得积分10
1秒前
jun完成签到,获得积分10
2秒前
能干大树发布了新的文献求助10
3秒前
马仕达发布了新的文献求助10
3秒前
3秒前
4秒前
Wang完成签到,获得积分10
4秒前
西瓜发布了新的文献求助10
5秒前
6秒前
李浩然发布了新的文献求助10
7秒前
8秒前
酷波er应助Jack80采纳,获得30
8秒前
晴雨发布了新的文献求助10
9秒前
9秒前
稳重的小刺猬完成签到,获得积分10
9秒前
Efaith完成签到,获得积分10
9秒前
77发布了新的文献求助10
11秒前
科研通AI6应助怕黑书翠采纳,获得10
12秒前
晨雾发布了新的文献求助10
13秒前
13秒前
爆米花应助李_Steven采纳,获得10
13秒前
斯文败类应助李_Steven采纳,获得10
13秒前
李健的小迷弟应助Efaith采纳,获得10
13秒前
科研通AI6应助李_Steven采纳,获得10
13秒前
完美世界应助李_Steven采纳,获得10
14秒前
16秒前
man完成签到,获得积分10
17秒前
wsj发布了新的文献求助30
17秒前
健壮的土豆完成签到 ,获得积分10
17秒前
chaxie完成签到,获得积分10
17秒前
赘婿应助libs采纳,获得10
17秒前
鳗鱼蜻蜓完成签到,获得积分20
18秒前
18秒前
小可爱完成签到 ,获得积分10
19秒前
斯文的莫英完成签到,获得积分10
19秒前
Orange应助李浩然采纳,获得10
19秒前
合适孤兰完成签到,获得积分20
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672