亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stroke Classification with Microwave Signals using Explainable Wavelet Convolutional Neural Network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 小波 小波变换 噪音(视频) 微波成像 模态(人机交互) 人工神经网络 计算机视觉 微波食品加热 图像(数学) 电信
作者
Sazid Hasan,Ali Zamani,Aida Brankovic,Konstanty Bialkowski,Amin Abbosh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/jbhi.2023.3327296
摘要

Stroke is one of the leading causes of death and disability. To address this challenge, microwave imaging has been proposed as a portable medical imaging modality. However, accurate stroke classification using microwave signals is still an open challenge. In addition, identified features of microwave signals used for stroke classification need to be linked back to the original data. This work attempts to address these issues by proposing a wavelet convolutional neural network (CNN), which combines multiresolution analysis and CNN to learn distinctive patterns in the scalogram for accurate classification. A game theoretic approach is used to explain the model and indicate distinctive features for discriminating stroke types. The proposed algorithm is tested in simulation and experiments. Different types of noise and manufacturing tolerances are modeled using data collected from healthy human trials and added to the simulation data to bridge the gap between the simulation and real-life data. The achieved classification accuracy using the proposed method ranges from 81.7% for 3D simulations to 95.7% for lab experiments using simple head phantoms. Obtained explanations using the method indicate the relevance of wavelet coefficients on frequencies 0.95-1.45 GHz and the time slot of 1.3 to 1.7 ns for distinguishing ischemic from hemorrhagic strokes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
9秒前
申腾达发布了新的文献求助10
12秒前
WWW发布了新的文献求助10
16秒前
WWW完成签到,获得积分10
28秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
开拖拉机的芍药完成签到 ,获得积分10
40秒前
ROMANTIC完成签到 ,获得积分10
45秒前
46秒前
Lucas应助开朗灵萱采纳,获得10
49秒前
YUE66完成签到,获得积分10
56秒前
58秒前
开朗灵萱发布了新的文献求助10
1分钟前
情怀应助奋斗的马里奥采纳,获得10
1分钟前
传奇3应助开朗灵萱采纳,获得10
1分钟前
Richard完成签到,获得积分10
1分钟前
monica完成签到 ,获得积分10
1分钟前
Jessica完成签到,获得积分10
1分钟前
orixero应助飞常爱你哦采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
浮岫发布了新的文献求助10
2分钟前
浮岫完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
rebeycca发布了新的文献求助10
2分钟前
奋斗的马里奥完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
lei完成签到,获得积分20
3分钟前
跳跃紫真完成签到,获得积分10
3分钟前
CodeCraft应助lei采纳,获得10
3分钟前
大玉124完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439