Stroke Classification with Microwave Signals using Explainable Wavelet Convolutional Neural Network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 小波 小波变换 噪音(视频) 微波成像 模态(人机交互) 人工神经网络 计算机视觉 微波食品加热 图像(数学) 电信
作者
Sazid Hasan,Ali Zamani,Aida Brankovic,Konstanty Bialkowski,Amin Abbosh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/jbhi.2023.3327296
摘要

Stroke is one of the leading causes of death and disability. To address this challenge, microwave imaging has been proposed as a portable medical imaging modality. However, accurate stroke classification using microwave signals is still an open challenge. In addition, identified features of microwave signals used for stroke classification need to be linked back to the original data. This work attempts to address these issues by proposing a wavelet convolutional neural network (CNN), which combines multiresolution analysis and CNN to learn distinctive patterns in the scalogram for accurate classification. A game theoretic approach is used to explain the model and indicate distinctive features for discriminating stroke types. The proposed algorithm is tested in simulation and experiments. Different types of noise and manufacturing tolerances are modeled using data collected from healthy human trials and added to the simulation data to bridge the gap between the simulation and real-life data. The achieved classification accuracy using the proposed method ranges from 81.7% for 3D simulations to 95.7% for lab experiments using simple head phantoms. Obtained explanations using the method indicate the relevance of wavelet coefficients on frequencies 0.95-1.45 GHz and the time slot of 1.3 to 1.7 ns for distinguishing ischemic from hemorrhagic strokes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
逍遥客发布了新的文献求助10
1秒前
1秒前
dejavu发布了新的文献求助10
2秒前
神经哈哈发布了新的文献求助10
2秒前
八乙基环辛四烯完成签到,获得积分10
2秒前
CipherSage应助Willing采纳,获得10
3秒前
陆壹伍615发布了新的文献求助10
3秒前
打打应助陈洋采纳,获得10
3秒前
丘比特应助俏皮沁采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
ww发布了新的文献求助10
4秒前
令狐发布了新的文献求助10
5秒前
zwx发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
yznfly应助ChenYX采纳,获得50
6秒前
顾矜应助ChenYX采纳,获得10
6秒前
完美世界应助ChenYX采纳,获得10
6秒前
XYY完成签到,获得积分10
6秒前
听闻完成签到 ,获得积分10
6秒前
无极微光应助ChenYX采纳,获得20
6秒前
JamesPei应助relax采纳,获得10
6秒前
无极微光应助ChenYX采纳,获得20
6秒前
chenlei完成签到,获得积分10
6秒前
小二郎应助ChenYX采纳,获得10
6秒前
7秒前
7秒前
科研通AI2S应助如意修洁采纳,获得10
7秒前
7秒前
乐乐应助源来凯始玺欢你采纳,获得10
8秒前
9秒前
顾矜应助zyl采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
英勇的冰之完成签到,获得积分20
10秒前
婵婵发布了新的文献求助10
11秒前
Akim应助张瑜采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978