Stroke Classification with Microwave Signals using Explainable Wavelet Convolutional Neural Network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 小波 小波变换 噪音(视频) 微波成像 模态(人机交互) 人工神经网络 计算机视觉 微波食品加热 图像(数学) 电信
作者
Sazid Hasan,Ali Zamani,Aida Brankovic,Konstanty Bialkowski,Amin Abbosh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/jbhi.2023.3327296
摘要

Stroke is one of the leading causes of death and disability. To address this challenge, microwave imaging has been proposed as a portable medical imaging modality. However, accurate stroke classification using microwave signals is still an open challenge. In addition, identified features of microwave signals used for stroke classification need to be linked back to the original data. This work attempts to address these issues by proposing a wavelet convolutional neural network (CNN), which combines multiresolution analysis and CNN to learn distinctive patterns in the scalogram for accurate classification. A game theoretic approach is used to explain the model and indicate distinctive features for discriminating stroke types. The proposed algorithm is tested in simulation and experiments. Different types of noise and manufacturing tolerances are modeled using data collected from healthy human trials and added to the simulation data to bridge the gap between the simulation and real-life data. The achieved classification accuracy using the proposed method ranges from 81.7% for 3D simulations to 95.7% for lab experiments using simple head phantoms. Obtained explanations using the method indicate the relevance of wavelet coefficients on frequencies 0.95-1.45 GHz and the time slot of 1.3 to 1.7 ns for distinguishing ischemic from hemorrhagic strokes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
滑稽帝完成签到,获得积分10
2秒前
3秒前
风趣的奇异果完成签到,获得积分10
3秒前
FFF完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
5秒前
6秒前
情怀应助onesilime采纳,获得10
6秒前
6秒前
斯文败类应助xxszyb采纳,获得10
6秒前
6秒前
SNE完成签到,获得积分10
6秒前
orixero应助qiqibaby采纳,获得10
7秒前
xl发布了新的文献求助10
7秒前
彭于晏应助毋意采纳,获得10
7秒前
hi完成签到,获得积分10
7秒前
义气的衬衫完成签到,获得积分20
9秒前
清爽的映阳给清爽的映阳的求助进行了留言
9秒前
9秒前
祥云发布了新的文献求助10
9秒前
U123456发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
华仔应助XUXU采纳,获得10
10秒前
10秒前
11秒前
田様应助xl采纳,获得10
11秒前
嘿嘿发布了新的文献求助10
11秒前
11秒前
wang驳回了赘婿应助
11秒前
jingsihan完成签到,获得积分10
12秒前
小王完成签到,获得积分10
12秒前
BINGBING1230发布了新的文献求助10
12秒前
杜本内完成签到,获得积分10
13秒前
cccjs发布了新的文献求助10
14秒前
大魔王发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569810
求助须知:如何正确求助?哪些是违规求助? 4655144
关于积分的说明 14710842
捐赠科研通 4596139
什么是DOI,文献DOI怎么找? 2522284
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464032