Stroke Classification with Microwave Signals using Explainable Wavelet Convolutional Neural Network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 小波 小波变换 噪音(视频) 微波成像 模态(人机交互) 人工神经网络 计算机视觉 微波食品加热 图像(数学) 电信
作者
Sazid Hasan,Ali Zamani,Aida Brankovic,Konstanty Bialkowski,Amin Abbosh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/jbhi.2023.3327296
摘要

Stroke is one of the leading causes of death and disability. To address this challenge, microwave imaging has been proposed as a portable medical imaging modality. However, accurate stroke classification using microwave signals is still an open challenge. In addition, identified features of microwave signals used for stroke classification need to be linked back to the original data. This work attempts to address these issues by proposing a wavelet convolutional neural network (CNN), which combines multiresolution analysis and CNN to learn distinctive patterns in the scalogram for accurate classification. A game theoretic approach is used to explain the model and indicate distinctive features for discriminating stroke types. The proposed algorithm is tested in simulation and experiments. Different types of noise and manufacturing tolerances are modeled using data collected from healthy human trials and added to the simulation data to bridge the gap between the simulation and real-life data. The achieved classification accuracy using the proposed method ranges from 81.7% for 3D simulations to 95.7% for lab experiments using simple head phantoms. Obtained explanations using the method indicate the relevance of wavelet coefficients on frequencies 0.95-1.45 GHz and the time slot of 1.3 to 1.7 ns for distinguishing ischemic from hemorrhagic strokes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
田様应助lin采纳,获得10
2秒前
luoshikun发布了新的文献求助10
2秒前
科目三应助纯真电灯胆采纳,获得10
2秒前
Weiding完成签到,获得积分20
2秒前
3秒前
追寻听云完成签到,获得积分10
3秒前
chenchen完成签到,获得积分20
3秒前
烟花应助行7采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
白开水发布了新的文献求助10
3秒前
11111完成签到,获得积分10
4秒前
美丽依波完成签到 ,获得积分10
4秒前
指尖的芭蕾完成签到,获得积分10
5秒前
Jasper应助Oliver采纳,获得10
6秒前
6秒前
张紫茹发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
承诺信守完成签到,获得积分10
8秒前
9秒前
Quinn发布了新的文献求助10
10秒前
11秒前
李志发布了新的文献求助10
12秒前
哇哇哇哇发布了新的文献求助20
12秒前
rui完成签到 ,获得积分10
12秒前
13秒前
kevinqpp发布了新的文献求助10
13秒前
13秒前
Xiaoduoyu发布了新的文献求助10
13秒前
14秒前
善学以致用应助黑就嘿采纳,获得10
14秒前
Wayne发布了新的文献求助10
15秒前
chenchen发布了新的文献求助10
15秒前
Hello应助快乐的紫山采纳,获得10
16秒前
TJH完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490