Stroke Classification with Microwave Signals using Explainable Wavelet Convolutional Neural Network

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 小波 小波变换 噪音(视频) 微波成像 模态(人机交互) 人工神经网络 计算机视觉 微波食品加热 图像(数学) 电信
作者
Sazid Hasan,Ali Zamani,Aida Brankovic,Konstanty Bialkowski,Amin Abbosh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/jbhi.2023.3327296
摘要

Stroke is one of the leading causes of death and disability. To address this challenge, microwave imaging has been proposed as a portable medical imaging modality. However, accurate stroke classification using microwave signals is still an open challenge. In addition, identified features of microwave signals used for stroke classification need to be linked back to the original data. This work attempts to address these issues by proposing a wavelet convolutional neural network (CNN), which combines multiresolution analysis and CNN to learn distinctive patterns in the scalogram for accurate classification. A game theoretic approach is used to explain the model and indicate distinctive features for discriminating stroke types. The proposed algorithm is tested in simulation and experiments. Different types of noise and manufacturing tolerances are modeled using data collected from healthy human trials and added to the simulation data to bridge the gap between the simulation and real-life data. The achieved classification accuracy using the proposed method ranges from 81.7% for 3D simulations to 95.7% for lab experiments using simple head phantoms. Obtained explanations using the method indicate the relevance of wavelet coefficients on frequencies 0.95-1.45 GHz and the time slot of 1.3 to 1.7 ns for distinguishing ischemic from hemorrhagic strokes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助董先生采纳,获得10
刚刚
吴兴倩发布了新的文献求助10
刚刚
刚刚
乐乐应助盛世嫡妃采纳,获得10
刚刚
雷欧奥特曼完成签到,获得积分10
1秒前
Rrrowling发布了新的文献求助10
1秒前
香蕉觅云应助阿卷采纳,获得10
1秒前
2秒前
杨秋艳完成签到 ,获得积分10
2秒前
2秒前
乖乖猫发布了新的文献求助10
2秒前
2秒前
syy080837发布了新的文献求助10
3秒前
Accept完成签到,获得积分10
3秒前
在水一方应助自觉的涵易采纳,获得10
4秒前
田兆鹏完成签到,获得积分10
5秒前
cxt517完成签到,获得积分10
5秒前
NexusExplorer应助吐丝麵包采纳,获得10
5秒前
interest-li完成签到,获得积分10
5秒前
6秒前
moonpie发布了新的文献求助10
6秒前
科研通AI2S应助ky幻影采纳,获得10
6秒前
天天快乐应助虚幻豌豆采纳,获得10
6秒前
科学完成签到,获得积分20
7秒前
看看文献发布了新的文献求助10
7秒前
7秒前
8秒前
OhoOu完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
interest-li发布了新的文献求助30
8秒前
roy_chiang完成签到,获得积分0
8秒前
haozai完成签到,获得积分10
8秒前
lj发布了新的文献求助10
9秒前
英姑应助Jasen采纳,获得10
9秒前
10秒前
10秒前
wangsai0532完成签到,获得积分10
10秒前
11秒前
东方三问完成签到,获得积分10
11秒前
18707979012完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482