Exploring Brain Function-Structure Connectome Skeleton via Self-supervised Graph-Transformer Approach

连接体 计算机科学 图形 人工智能 钥匙(锁) 脑功能 机器学习 理论计算机科学 神经科学 功能连接 心理学 计算机安全
作者
Yanqing Kang,Ruoyang Wang,Enze Shi,Jinru Wu,Sigang Yu,Shu Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 308-317
标识
DOI:10.1007/978-3-031-43993-3_30
摘要

Understanding the relationship between brain functional connectivity and structural connectivity is important in the field of brain imaging, and it can help us better comprehend the working mechanisms of the brain. Much effort has been made on this issue, but it is still far from satisfactory. The brain transmits information through a network architecture, which means that the regions and connections of the brain are significant. The main difficulties with this issue are currently at least two aspects. On the one hand, the importance of different brain regions in structural and functional integration has not been fully addressed; on the other hand, the connectome skeleton of the brain, plays the role in common and key connections in the brain network, has not been clearly studied. To alleviate the above problems, this paper proposes a transformer-based self-supervised graph reconstruction framework (TSGR). The framework uses the graph neural network (GNN) to fuse functional and structural information of the brain, reconstructs the brain graph through a self-supervised model and identifies the regions that are important to the reconstruction task. These regions are considered as key connectome regions which play an essential role in the communication connectivity of the brain network. Based on key brain regions, the connectome skeleton can be obtained. Experimental results demonstrate the effectiveness of the proposed method, which obtains key regions and connectome skeleton in the brain network. This provides a new angle of view to explore the relationship between brain function and structure. Our code is available at https://github.com/kang105/TSGR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助合适的芷巧采纳,获得10
1秒前
bubble发布了新的文献求助30
1秒前
CC完成签到,获得积分10
2秒前
超A发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
专一的孤菱完成签到,获得积分10
4秒前
4秒前
燕子发布了新的文献求助10
5秒前
5秒前
5秒前
小李完成签到,获得积分10
5秒前
6秒前
救赎发布了新的文献求助10
6秒前
7秒前
紧张的忆霜完成签到,获得积分10
7秒前
飓风发布了新的文献求助10
8秒前
8秒前
潇洒南烟发布了新的文献求助10
8秒前
9秒前
Afaer完成签到,获得积分10
9秒前
ww发布了新的文献求助10
9秒前
小柴胡发布了新的文献求助30
10秒前
10秒前
嗯很好发布了新的文献求助10
10秒前
王不留行发布了新的文献求助10
10秒前
11秒前
文静千凡发布了新的文献求助10
11秒前
小辉要做实验完成签到,获得积分10
11秒前
邢哥哥完成签到,获得积分10
11秒前
含糊的夜阑完成签到,获得积分10
11秒前
LCCCC发布了新的文献求助10
12秒前
发疯的面发布了新的文献求助10
12秒前
莫灭龙完成签到,获得积分10
12秒前
12秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083403
求助须知:如何正确求助?哪些是违规求助? 2736768
关于积分的说明 7542379
捐赠科研通 2386033
什么是DOI,文献DOI怎么找? 1265316
科研通“疑难数据库(出版商)”最低求助积分说明 613035
版权声明 597816