亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors

药物发现 计算机科学 背景(考古学) 人工智能 药物重新定位 制药工业 虚拟筛选 药品 重新调整用途 数据科学 机器学习 风险分析(工程) 工程类 医学 药理学 生物信息学 古生物学 生物 废物管理
作者
Periyasamy Natarajan Shiammala,N. Duraimutharasan,Baskaralingam Vaseeharan,Abdulaziz S. Alothaim,Esam S. Al‐Malki,B. Snekaa,Sher Zaman Safi,Sanjeev Kumar Singh,Devadasan Velmurugan,Chandrabose Selvaraj
出处
期刊:Methods [Elsevier]
卷期号:219: 82-94 被引量:17
标识
DOI:10.1016/j.ymeth.2023.09.010
摘要

Artificial intelligence (AI), particularly deep learning as a subcategory of AI, provides opportunities to accelerate and improve the process of discovering and developing new drugs. The use of AI in drug discovery is still in its early stages, but it has the potential to revolutionize the way new drugs are discovered and developed. As AI technology continues to evolve, it is likely that AI will play an even greater role in the future of drug discovery. AI is used to identify new drug targets, design new molecules, and predict the efficacy and safety of potential drugs. The inclusion of AI in drug discovery can screen millions of compounds in a matter of hours, identifying potential drug candidates that would have taken years to find using traditional methods. AI is highly utilized in the pharmaceutical industry by optimizing processes, reducing waste, and ensuring quality control. This review covers much-needed topics, including the different types of machine-learning techniques, their applications in drug discovery, and the challenges and limitations of using machine learning in this field. The state-of-the-art of AI-assisted pharmaceutical discovery is described, covering applications in structure and ligand-based virtual screening, de novo drug creation, prediction of physicochemical and pharmacokinetic properties, drug repurposing, and related topics. Finally, many obstacles and limits of present approaches are outlined, with an eye on potential future avenues for AI-assisted drug discovery and design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheesy发布了新的文献求助10
刚刚
合一海盗完成签到,获得积分10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
sisyphus发布了新的文献求助10
3秒前
9秒前
体贴鸽子完成签到,获得积分10
15秒前
善学以致用应助cheesy采纳,获得10
16秒前
Master发布了新的文献求助10
16秒前
sun_lin完成签到 ,获得积分10
21秒前
22秒前
莫名乐乐完成签到,获得积分10
27秒前
Krystal发布了新的文献求助30
29秒前
共享精神应助xs采纳,获得10
31秒前
想游泳的鹰完成签到,获得积分10
33秒前
凯文完成签到 ,获得积分10
35秒前
cheesy完成签到,获得积分10
36秒前
辰一完成签到,获得积分10
37秒前
43秒前
xs完成签到,获得积分10
47秒前
Krystal完成签到,获得积分10
56秒前
56秒前
Rainbow完成签到 ,获得积分10
59秒前
搜集达人应助姚小包子采纳,获得10
1分钟前
xs发布了新的文献求助10
1分钟前
充电宝应助7U采纳,获得10
1分钟前
1分钟前
1分钟前
艺玲发布了新的文献求助10
1分钟前
1分钟前
沉静盼易发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Joe完成签到,获得积分10
1分钟前
小何完成签到,获得积分10
1分钟前
柏小霜完成签到 ,获得积分10
1分钟前
姚小包子完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466733
求助须知:如何正确求助?哪些是违规求助? 3059521
关于积分的说明 9066830
捐赠科研通 2750012
什么是DOI,文献DOI怎么找? 1508876
科研通“疑难数据库(出版商)”最低求助积分说明 697115
邀请新用户注册赠送积分活动 696896