Ingredient-Guided Region Discovery and Relationship Modeling for Food Category-Ingredient Prediction

成分 活性成分 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 食品科学 医学 理论计算机科学 化学 药理学
作者
Zhiling Wang,Weiqing Min,Zhuo Li,Liping Kang,Xiaoming Wei,Xiaolin Wei,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5214-5226 被引量:20
标识
DOI:10.1109/tip.2022.3193763
摘要

Recognizing the category and its ingredient composition from food images facilitates automatic nutrition estimation, which is crucial to various health relevant applications, such as nutrition intake management and healthy diet recommendation. Since food is composed of ingredients, discovering ingredient-relevant visual regions can help identify its corresponding category and ingredients. Furthermore, various ingredient relationships like co-occurrence and exclusion are also critical for this task. For that, we propose an ingredient-oriented multi-task food category-ingredient joint learning framework for simultaneous food recognition and ingredient prediction. This framework mainly involves learning an ingredient dictionary for ingredient-relevant visual region discovery and building an ingredient-based semantic-visual graph for ingredient relationship modeling. To obtain ingredient-relevant visual regions, we build an ingredient dictionary to capture multiple ingredient regions and obtain the corresponding assignment map, and then pool the region features belonging to the same ingredient to identify the ingredients more accurately and meanwhile improve the classification performance. For ingredient-relationship modeling, we utilize the visual ingredient representations as nodes and the semantic similarity between ingredient embeddings as edges to construct an ingredient graph, and then learn their relationships via the graph convolutional network to make label embeddings and visual features interact with each other to improve the performance. Finally, fused features from both ingredient-oriented region features and ingredient-relationship features are used in the following multi-task category-ingredient joint learning. Extensive evaluation on three popular benchmark datasets (ETH Food-101, Vireo Food-172 and ISIA Food-200) demonstrates the effectiveness of our method. Further visualization of ingredient assignment maps and attention maps also shows the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YM完成签到,获得积分10
刚刚
2秒前
甜美三娘完成签到,获得积分10
3秒前
汉堡包应助jellyfish采纳,获得20
3秒前
深情安青应助着急的无剑采纳,获得10
4秒前
苔苔完成签到,获得积分10
4秒前
所所应助儒雅的友瑶采纳,获得10
5秒前
陶醉雪青完成签到,获得积分10
5秒前
xcxc完成签到,获得积分10
5秒前
神勇冬莲完成签到,获得积分10
6秒前
传奇3应助元气少女岳云鹏采纳,获得10
6秒前
小猪完成签到,获得积分10
10秒前
英勇新烟完成签到,获得积分10
10秒前
herococa应助陶醉雪青采纳,获得10
11秒前
大力的飞莲完成签到,获得积分10
11秒前
CipherSage应助施凝采纳,获得10
12秒前
000发布了新的文献求助10
13秒前
14秒前
天天快乐应助科研小白采纳,获得10
15秒前
15秒前
SciGPT应助傲娇的曼香采纳,获得10
15秒前
共享精神应助kukudou2采纳,获得10
15秒前
领导范儿应助苔苔采纳,获得10
18秒前
FartKing发布了新的文献求助20
19秒前
LaTeXer应助FartKing采纳,获得30
22秒前
聪慧芷巧应助FartKing采纳,获得10
22秒前
科研老兵完成签到,获得积分10
23秒前
MnO2fff完成签到,获得积分10
25秒前
25秒前
施凝发布了新的文献求助10
30秒前
结实彤完成签到 ,获得积分10
31秒前
32秒前
32秒前
33秒前
FIN应助shawn采纳,获得20
34秒前
34秒前
YaoHui发布了新的文献求助10
35秒前
35秒前
smartCH发布了新的文献求助10
35秒前
闪闪秋寒完成签到 ,获得积分10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993