Ingredient-Guided Region Discovery and Relationship Modeling for Food Category-Ingredient Prediction

成分 活性成分 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 食品科学 医学 理论计算机科学 化学 药理学
作者
Zhiling Wang,Weiqing Min,Zhuo Li,Liping Kang,Xiaoming Wei,Xiaolin Wei,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5214-5226 被引量:20
标识
DOI:10.1109/tip.2022.3193763
摘要

Recognizing the category and its ingredient composition from food images facilitates automatic nutrition estimation, which is crucial to various health relevant applications, such as nutrition intake management and healthy diet recommendation. Since food is composed of ingredients, discovering ingredient-relevant visual regions can help identify its corresponding category and ingredients. Furthermore, various ingredient relationships like co-occurrence and exclusion are also critical for this task. For that, we propose an ingredient-oriented multi-task food category-ingredient joint learning framework for simultaneous food recognition and ingredient prediction. This framework mainly involves learning an ingredient dictionary for ingredient-relevant visual region discovery and building an ingredient-based semantic-visual graph for ingredient relationship modeling. To obtain ingredient-relevant visual regions, we build an ingredient dictionary to capture multiple ingredient regions and obtain the corresponding assignment map, and then pool the region features belonging to the same ingredient to identify the ingredients more accurately and meanwhile improve the classification performance. For ingredient-relationship modeling, we utilize the visual ingredient representations as nodes and the semantic similarity between ingredient embeddings as edges to construct an ingredient graph, and then learn their relationships via the graph convolutional network to make label embeddings and visual features interact with each other to improve the performance. Finally, fused features from both ingredient-oriented region features and ingredient-relationship features are used in the following multi-task category-ingredient joint learning. Extensive evaluation on three popular benchmark datasets (ETH Food-101, Vireo Food-172 and ISIA Food-200) demonstrates the effectiveness of our method. Further visualization of ingredient assignment maps and attention maps also shows the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
wanci应助Chang采纳,获得10
2秒前
JamesPei应助蜗牛撵大象采纳,获得10
2秒前
英俊的千万完成签到,获得积分10
3秒前
4秒前
WHY发布了新的文献求助10
5秒前
5秒前
5秒前
十九岁的时差完成签到 ,获得积分10
5秒前
6秒前
6秒前
colddie发布了新的文献求助10
6秒前
tgytc完成签到 ,获得积分10
6秒前
豆豆完成签到 ,获得积分10
6秒前
让地球种满香菜完成签到,获得积分10
7秒前
李健应助yiyi采纳,获得10
7秒前
7秒前
7秒前
Amai发布了新的文献求助20
7秒前
7秒前
Hyde完成签到,获得积分10
7秒前
土狗完成签到,获得积分20
8秒前
9秒前
9秒前
汉堡包应助真德丕采纳,获得10
10秒前
10秒前
10秒前
ppf发布了新的文献求助10
10秒前
故乡风话完成签到,获得积分10
10秒前
天天快乐应助WHY采纳,获得10
11秒前
liwenqiang发布了新的文献求助10
12秒前
12秒前
lyon完成签到,获得积分10
12秒前
feilu应助modesty采纳,获得10
12秒前
AOI0504发布了新的文献求助10
13秒前
ruochenzu发布了新的文献求助10
13秒前
景秋灵发布了新的文献求助10
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294979
求助须知:如何正确求助?哪些是违规求助? 2931033
关于积分的说明 8449725
捐赠科研通 2603561
什么是DOI,文献DOI怎么找? 1421144
科研通“疑难数据库(出版商)”最低求助积分说明 660825
邀请新用户注册赠送积分活动 643654