Ingredient-Guided Region Discovery and Relationship Modeling for Food Category-Ingredient Prediction

成分 活性成分 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 食品科学 医学 理论计算机科学 药理学 化学
作者
Zhiling Wang,Weiqing Min,Zhuo Li,Liping Kang,Xiaoming Wei,Xiaolin Wei,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5214-5226 被引量:20
标识
DOI:10.1109/tip.2022.3193763
摘要

Recognizing the category and its ingredient composition from food images facilitates automatic nutrition estimation, which is crucial to various health relevant applications, such as nutrition intake management and healthy diet recommendation. Since food is composed of ingredients, discovering ingredient-relevant visual regions can help identify its corresponding category and ingredients. Furthermore, various ingredient relationships like co-occurrence and exclusion are also critical for this task. For that, we propose an ingredient-oriented multi-task food category-ingredient joint learning framework for simultaneous food recognition and ingredient prediction. This framework mainly involves learning an ingredient dictionary for ingredient-relevant visual region discovery and building an ingredient-based semantic-visual graph for ingredient relationship modeling. To obtain ingredient-relevant visual regions, we build an ingredient dictionary to capture multiple ingredient regions and obtain the corresponding assignment map, and then pool the region features belonging to the same ingredient to identify the ingredients more accurately and meanwhile improve the classification performance. For ingredient-relationship modeling, we utilize the visual ingredient representations as nodes and the semantic similarity between ingredient embeddings as edges to construct an ingredient graph, and then learn their relationships via the graph convolutional network to make label embeddings and visual features interact with each other to improve the performance. Finally, fused features from both ingredient-oriented region features and ingredient-relationship features are used in the following multi-task category-ingredient joint learning. Extensive evaluation on three popular benchmark datasets (ETH Food-101, Vireo Food-172 and ISIA Food-200) demonstrates the effectiveness of our method. Further visualization of ingredient assignment maps and attention maps also shows the superiority of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助王碱采纳,获得10
刚刚
刚刚
吴彦祖完成签到,获得积分10
刚刚
1秒前
mayun95完成签到,获得积分10
2秒前
star完成签到,获得积分20
2秒前
4秒前
4秒前
寒冷猫咪完成签到,获得积分20
4秒前
TARS发布了新的文献求助10
5秒前
6秒前
科研通AI6应助Maxw采纳,获得10
6秒前
6秒前
6秒前
Genius完成签到,获得积分10
6秒前
jj发布了新的文献求助10
8秒前
啦11发布了新的文献求助20
8秒前
9秒前
mayun95发布了新的文献求助10
9秒前
9秒前
10秒前
opair应助多愁善感的鱼采纳,获得10
10秒前
王碱发布了新的文献求助10
10秒前
王一完成签到,获得积分20
11秒前
11秒前
寒冷猫咪发布了新的文献求助10
11秒前
11秒前
大模型应助4qfguj采纳,获得10
13秒前
mu完成签到,获得积分10
13秒前
13秒前
an12138完成签到,获得积分10
13秒前
FashionBoy应助123456采纳,获得10
13秒前
美女完成签到,获得积分20
13秒前
15秒前
科研努力发布了新的文献求助10
16秒前
16秒前
qqqq_8发布了新的文献求助10
16秒前
失眠亦寒发布了新的文献求助10
17秒前
四海发布了新的文献求助10
19秒前
炸鸡发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497