Ingredient-Guided Region Discovery and Relationship Modeling for Food Category-Ingredient Prediction

成分 活性成分 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 食品科学 医学 理论计算机科学 药理学 化学
作者
Zhiling Wang,Weiqing Min,Zhuo Li,Liping Kang,Xiaoming Wei,Xiaolin Wei,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5214-5226 被引量:20
标识
DOI:10.1109/tip.2022.3193763
摘要

Recognizing the category and its ingredient composition from food images facilitates automatic nutrition estimation, which is crucial to various health relevant applications, such as nutrition intake management and healthy diet recommendation. Since food is composed of ingredients, discovering ingredient-relevant visual regions can help identify its corresponding category and ingredients. Furthermore, various ingredient relationships like co-occurrence and exclusion are also critical for this task. For that, we propose an ingredient-oriented multi-task food category-ingredient joint learning framework for simultaneous food recognition and ingredient prediction. This framework mainly involves learning an ingredient dictionary for ingredient-relevant visual region discovery and building an ingredient-based semantic-visual graph for ingredient relationship modeling. To obtain ingredient-relevant visual regions, we build an ingredient dictionary to capture multiple ingredient regions and obtain the corresponding assignment map, and then pool the region features belonging to the same ingredient to identify the ingredients more accurately and meanwhile improve the classification performance. For ingredient-relationship modeling, we utilize the visual ingredient representations as nodes and the semantic similarity between ingredient embeddings as edges to construct an ingredient graph, and then learn their relationships via the graph convolutional network to make label embeddings and visual features interact with each other to improve the performance. Finally, fused features from both ingredient-oriented region features and ingredient-relationship features are used in the following multi-task category-ingredient joint learning. Extensive evaluation on three popular benchmark datasets (ETH Food-101, Vireo Food-172 and ISIA Food-200) demonstrates the effectiveness of our method. Further visualization of ingredient assignment maps and attention maps also shows the superiority of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaosh完成签到,获得积分10
刚刚
刚刚
Northtime完成签到,获得积分10
刚刚
菜菜完成签到,获得积分10
刚刚
huangtao发布了新的文献求助10
刚刚
kk发布了新的文献求助10
刚刚
爰采唐矣完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
zzt完成签到,获得积分10
2秒前
2秒前
wdh发布了新的文献求助10
3秒前
慕容生完成签到 ,获得积分10
3秒前
张浮生完成签到,获得积分10
3秒前
Freddy完成签到 ,获得积分10
3秒前
永远永远完成签到,获得积分10
3秒前
呼呼呼发布了新的文献求助10
3秒前
lunar完成签到 ,获得积分10
3秒前
小老虎发布了新的文献求助10
4秒前
Loki发布了新的文献求助10
4秒前
shenyu完成签到 ,获得积分10
4秒前
rrrrrrun完成签到,获得积分20
4秒前
科研通AI2S应助知非采纳,获得10
5秒前
MNing发布了新的文献求助10
5秒前
lq完成签到 ,获得积分10
5秒前
6秒前
Sun1c7完成签到,获得积分10
6秒前
111完成签到 ,获得积分10
6秒前
6秒前
陆仓颉发布了新的文献求助10
6秒前
6秒前
早川木槿完成签到,获得积分10
6秒前
郭敬一完成签到,获得积分10
6秒前
kilin发布了新的文献求助10
7秒前
7秒前
7秒前
leeshho完成签到,获得积分10
7秒前
8秒前
小鱼完成签到 ,获得积分10
9秒前
lvyan完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645392
求助须知:如何正确求助?哪些是违规求助? 4768659
关于积分的说明 15028508
捐赠科研通 4803961
什么是DOI,文献DOI怎么找? 2568583
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485551