Ingredient-Guided Region Discovery and Relationship Modeling for Food Category-Ingredient Prediction

成分 活性成分 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 食品科学 医学 理论计算机科学 药理学 化学
作者
Zhiling Wang,Weiqing Min,Zhuo Li,Liping Kang,Xiaoming Wei,Xiaolin Wei,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5214-5226 被引量:20
标识
DOI:10.1109/tip.2022.3193763
摘要

Recognizing the category and its ingredient composition from food images facilitates automatic nutrition estimation, which is crucial to various health relevant applications, such as nutrition intake management and healthy diet recommendation. Since food is composed of ingredients, discovering ingredient-relevant visual regions can help identify its corresponding category and ingredients. Furthermore, various ingredient relationships like co-occurrence and exclusion are also critical for this task. For that, we propose an ingredient-oriented multi-task food category-ingredient joint learning framework for simultaneous food recognition and ingredient prediction. This framework mainly involves learning an ingredient dictionary for ingredient-relevant visual region discovery and building an ingredient-based semantic-visual graph for ingredient relationship modeling. To obtain ingredient-relevant visual regions, we build an ingredient dictionary to capture multiple ingredient regions and obtain the corresponding assignment map, and then pool the region features belonging to the same ingredient to identify the ingredients more accurately and meanwhile improve the classification performance. For ingredient-relationship modeling, we utilize the visual ingredient representations as nodes and the semantic similarity between ingredient embeddings as edges to construct an ingredient graph, and then learn their relationships via the graph convolutional network to make label embeddings and visual features interact with each other to improve the performance. Finally, fused features from both ingredient-oriented region features and ingredient-relationship features are used in the following multi-task category-ingredient joint learning. Extensive evaluation on three popular benchmark datasets (ETH Food-101, Vireo Food-172 and ISIA Food-200) demonstrates the effectiveness of our method. Further visualization of ingredient assignment maps and attention maps also shows the superiority of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
坦率的金针菇完成签到 ,获得积分10
1秒前
ARNAMO发布了新的文献求助10
4秒前
4秒前
5秒前
刘冠廷发布了新的文献求助30
5秒前
科研混子完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
Able阿拉基完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
子木发布了新的文献求助10
9秒前
997完成签到,获得积分10
10秒前
香蕉觅云应助WYN采纳,获得10
10秒前
芳菲依旧发布了新的文献求助150
11秒前
qpp完成签到,获得积分10
11秒前
11秒前
刘冠廷完成签到,获得积分20
12秒前
所所应助温暖幻桃采纳,获得10
12秒前
传奇3应助显隐采纳,获得10
13秒前
14秒前
14秒前
无花果应助李茉琳采纳,获得10
15秒前
15秒前
瓜小完成签到,获得积分10
15秒前
15秒前
NexusExplorer应助Miranda采纳,获得10
16秒前
断罪残影完成签到,获得积分10
16秒前
17秒前
17秒前
断罪残影发布了新的文献求助10
19秒前
阿冰发布了新的文献求助10
19秒前
20秒前
山令发布了新的文献求助10
20秒前
21秒前
汉堡包应助吴迪采纳,获得10
22秒前
23秒前
江枫发布了新的文献求助10
24秒前
猪猪hero发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785302
求助须知:如何正确求助?哪些是违规求助? 5687230
关于积分的说明 15467275
捐赠科研通 4914416
什么是DOI,文献DOI怎么找? 2645196
邀请新用户注册赠送积分活动 1593006
关于科研通互助平台的介绍 1547351