Ingredient-Guided Region Discovery and Relationship Modeling for Food Category-Ingredient Prediction

成分 活性成分 人工智能 计算机科学 图形 机器学习 模式识别(心理学) 食品科学 医学 理论计算机科学 药理学 化学
作者
Zhiling Wang,Weiqing Min,Zhuo Li,Liping Kang,Xiaoming Wei,Xiaolin Wei,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5214-5226 被引量:20
标识
DOI:10.1109/tip.2022.3193763
摘要

Recognizing the category and its ingredient composition from food images facilitates automatic nutrition estimation, which is crucial to various health relevant applications, such as nutrition intake management and healthy diet recommendation. Since food is composed of ingredients, discovering ingredient-relevant visual regions can help identify its corresponding category and ingredients. Furthermore, various ingredient relationships like co-occurrence and exclusion are also critical for this task. For that, we propose an ingredient-oriented multi-task food category-ingredient joint learning framework for simultaneous food recognition and ingredient prediction. This framework mainly involves learning an ingredient dictionary for ingredient-relevant visual region discovery and building an ingredient-based semantic-visual graph for ingredient relationship modeling. To obtain ingredient-relevant visual regions, we build an ingredient dictionary to capture multiple ingredient regions and obtain the corresponding assignment map, and then pool the region features belonging to the same ingredient to identify the ingredients more accurately and meanwhile improve the classification performance. For ingredient-relationship modeling, we utilize the visual ingredient representations as nodes and the semantic similarity between ingredient embeddings as edges to construct an ingredient graph, and then learn their relationships via the graph convolutional network to make label embeddings and visual features interact with each other to improve the performance. Finally, fused features from both ingredient-oriented region features and ingredient-relationship features are used in the following multi-task category-ingredient joint learning. Extensive evaluation on three popular benchmark datasets (ETH Food-101, Vireo Food-172 and ISIA Food-200) demonstrates the effectiveness of our method. Further visualization of ingredient assignment maps and attention maps also shows the superiority of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyf567完成签到,获得积分10
1秒前
YSM完成签到,获得积分0
1秒前
YongLiu完成签到,获得积分10
2秒前
可爱的兔兔完成签到,获得积分10
2秒前
搜集达人应助ares-gxd采纳,获得10
3秒前
姚雨轩完成签到 ,获得积分10
3秒前
美好如凡发布了新的文献求助10
3秒前
老狗子发布了新的文献求助10
3秒前
英俊的铭应助Max采纳,获得10
3秒前
嘻嘻完成签到 ,获得积分10
4秒前
beyond完成签到,获得积分10
5秒前
orixero应助Woowon采纳,获得10
5秒前
5秒前
Derrick完成签到,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
英俊的铭应助YSM采纳,获得10
10秒前
10秒前
11秒前
糟糕的雨莲完成签到,获得积分20
12秒前
zzzzzz发布了新的文献求助10
13秒前
文献博士完成签到 ,获得积分10
13秒前
外向晓山完成签到,获得积分20
13秒前
JamesPei应助hihi采纳,获得10
13秒前
13秒前
朝qwer完成签到,获得积分20
13秒前
wjy完成签到,获得积分10
14秒前
Mnegya发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
彩云追月发布了新的文献求助10
18秒前
外向晓山发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
CZK完成签到,获得积分20
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369