Multiobjective Optimization of Safety, Comfort, Fuel Economy, and Power Sources Durability for FCHEV in Car-Following Scenarios

动力传动系统 汽车工程 燃料效率 多目标优化 地铁列车时刻表 测功机 能源管理 计算机科学 电池(电) 帕累托原理 可靠性工程 功率(物理) 工程类 能量(信号处理) 扭矩 运营管理 统计 物理 数学 量子力学 机器学习 热力学 操作系统
作者
Longlong Zhu,Fazhan Tao,Zhumu Fu,Haochen Sun,Baofeng Ji,Qihong Chen
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:9 (1): 1797-1808 被引量:15
标识
DOI:10.1109/tte.2022.3193806
摘要

Safety, comfort, and energy-saving oriented car-following issue for fuel cell/battery hybrid electric vehicle (FCHEV) is a comprehensive problem of vehicle dynamic and fuel economy. Combining adaptive cruise control (ACC) and energy management strategy (EMS) is proven to be one promising method to realize multiobjective co-optimization. However, in majority of existing researches, degradation of power sources is always ignored and trade-off among different objectives remains a burning issue, in this article, a Pareto-based EMS under car-following scenarios is proposed. Specifically, degradation models of fuel cell/battery are established and incorporated into multiobjective optimization functions. Then, based on back-stepping technique and equivalent consumption minimization strategy (ECMS), an integrated framework of ACC and EMS is developed, which realizes the coordination between vehicle external longitudinal dynamics control and internal powertrain energy management. For getting the trade-off among the abovementioned objectives, a Pareto-involved multiobjective optimization method is proposed to optimize control parameters of the integrated framework of ACC and EMS. The simulation results of Urban Dynamometer Driving Schedule (UDDS) test highlight that compared with the weighted-sum methods, the proposed method can utmost reduce average tracking error by 15.14%, variation of speed by 8.61%, equivalent fuel consumption cost by 7.56%, and comprehensive power sources degradation cost by 17.78%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红叶发布了新的文献求助20
刚刚
刚刚
zzzy发布了新的文献求助10
1秒前
1224323完成签到,获得积分10
1秒前
1秒前
dgao_aecc完成签到,获得积分10
1秒前
zhangxf608完成签到,获得积分10
1秒前
1秒前
tianj完成签到,获得积分20
2秒前
2秒前
rui发布了新的文献求助10
2秒前
longer发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
ABCD完成签到,获得积分10
4秒前
今后应助三土采纳,获得10
5秒前
无极微光应助luonayi采纳,获得20
5秒前
sssyz发布了新的文献求助10
5秒前
5秒前
我爱学习完成签到,获得积分10
5秒前
5秒前
堪曼凝完成签到,获得积分10
5秒前
ning发布了新的文献求助10
6秒前
6秒前
小蘑菇应助若尘采纳,获得10
6秒前
脑洞疼应助恒瑞彭于晏采纳,获得10
6秒前
DrCuiTianjin发布了新的文献求助10
6秒前
7秒前
圈圈完成签到,获得积分10
7秒前
7秒前
7秒前
搜集达人应助陶醉水风采纳,获得10
7秒前
救驾来迟发布了新的文献求助10
7秒前
华仔应助岁岁采纳,获得10
8秒前
8秒前
儒雅HR发布了新的文献求助10
8秒前
哈哈完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994