Machine-learning models for the prediction of ideal surgical outcomes in patients with adult spinal deformity

脊柱畸形 理想(伦理) 医学 畸形 计算机科学 机器学习 人工智能 物理医学与康复 外科 哲学 认识论
作者
Dongfan Wang,Qijun Wang,Peng Cui,Shuaikang Wang,Di Han,Xiaolong Chen,Shibao Lu
出处
期刊:The bone & joint journal [British Editorial Society of Bone and Joint Surgery]
卷期号:107-B (3): 337-345
标识
DOI:10.1302/0301-620x.107b3.bjj-2024-1220.r1
摘要

Aims Adult spinal deformity (ASD) surgery can reduce pain and disability. However, the actual surgical efficacy of ASD in doing so is far from desirable, with frequent complications and limited improvement in quality of life. The accurate prediction of surgical outcome is crucial to the process of clinical decision-making. Consequently, the aim of this study was to develop and validate a model for predicting an ideal surgical outcome (ISO) two years after ASD surgery. Methods We conducted a retrospective analysis of 458 consecutive patients who had undergone spinal fusion surgery for ASD between January 2016 and June 2022. The outcome of interest was achievement of the ISO, defined as an improvement in patient-reported outcomes exceeding the minimal clinically important difference, with no postoperative complications. Three machine-learning (ML) algorithms – LASSO, RFE, and Boruta – were used to identify key variables from the collected data. The dataset was randomly split into training (60%) and test (40%) sets. Five different ML models were trained, including logistic regression, random forest, XGBoost, LightGBM, and multilayer perceptron. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Results The analysis included 208 patients (mean age 64.62 years (SD 8.21); 48 male (23.1%), 160 female (76.9%)). Overall, 42.8% of patients (89/208) achieved the ideal surgical outcome. Eight features were identified as key variables affecting prognosis: depression, osteoporosis, frailty, failure of pelvic compensation, relative functional cross-sectional area of the paraspinal muscles, postoperative sacral slope, pelvic tilt match, and sagittal age-adjusted score match. The best prediction model was LightGBM, achieving the following performance metrics: AUROC 0.888 (95% CI 0.810 to 0.966); accuracy 0.843; sensitivity 0.829; specificity 0.854; positive predictive value 0.806; and negative predictive value 0.872. Conclusion In this prognostic study, we developed a machine-learning model that accurately predicted outcome after surgery for ASD. The model is built on routinely modifiable indicators, thereby facilitating its integration into clinical practice to promote optimized decision-making. Cite this article: Bone Joint J 2025;107-B(3):337–345.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHD发布了新的文献求助10
2秒前
Hello应助杨诚采纳,获得10
3秒前
孔雨珍完成签到,获得积分10
5秒前
5秒前
轮回1奇点完成签到,获得积分10
5秒前
6秒前
Owen应助机智的白猫采纳,获得10
8秒前
孔雨珍发布了新的文献求助10
9秒前
ff发布了新的文献求助10
9秒前
11秒前
12秒前
sanshanf完成签到,获得积分10
14秒前
英俊的铭应助奈奈泥采纳,获得10
14秒前
小呆瓜与鱼完成签到,获得积分10
15秒前
17秒前
刘能发布了新的文献求助10
19秒前
20秒前
21秒前
丝丢皮的完成签到 ,获得积分10
22秒前
23秒前
子车茗应助zzzzzz采纳,获得20
24秒前
文武发布了新的文献求助10
24秒前
tesla发布了新的文献求助10
25秒前
26秒前
丝丢皮得完成签到 ,获得积分10
27秒前
28秒前
28秒前
桐桐应助复杂的雪巧采纳,获得10
30秒前
30秒前
无名老大应助不问悲欢采纳,获得30
30秒前
一棵好困芽完成签到 ,获得积分20
31秒前
怒发5篇sci完成签到,获得积分10
31秒前
明理碧完成签到,获得积分10
32秒前
岳苏佳完成签到,获得积分10
32秒前
33秒前
老迟到的从露完成签到,获得积分10
34秒前
34秒前
Amy发布了新的文献求助30
34秒前
34秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514588
求助须知:如何正确求助?哪些是违规求助? 3096951
关于积分的说明 9233306
捐赠科研通 2791978
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031