Considerations regarding the selection, sampling, extraction, analysis, and modelling of biomarkers in exhaled breath for early lung cancer screening

化学 呼出气冷凝液 气体分析呼吸 肺癌 选择(遗传算法) 采样(信号处理) 萃取(化学) 色谱法 肺癌筛查 内科学 人工智能 计算机视觉 计算机科学 医学 滤波器(信号处理) 哮喘
作者
Robert Lundberg,Johan Dahlén,Thomas Lundeberg
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:: 116787-116787
标识
DOI:10.1016/j.jpba.2025.116787
摘要

Lung cancer (LC) is the deadliest cancer due to the lack of efficient screening methods that detect the disease early. This review, covering the years 2011 - 2025, summarizes state-of-the-art LC screening through analysis of volatile organic compounds (VOCs) in exhaled breath. All fundamental parts of the methodology are covered, i.e., sampling, analysis, and multivariate data modelling. This review shows that breath is commonly collected in Tedlar® bags and subsequently analysed with solid phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) or sensors. Data analysis has been made using multivariate methods like principal component analysis (PCA) or artificial neural networks (ANNs). The VOCs exhaled by LC patients and healthy subjects are in principle the same. However, concentration levels differ between the two groups. Therefore, LC patients are usually separated from healthy controls through multivariate modelling of a set of VOC biomarkers rather than by individual biomarkers. Although most exhaled VOCs are formed endogenously via metabolic processes and oxidative stress, some compounds also have exogenous origins, which must be taken into consideration. More than 200 different VOCs have been reported as potential biomarkers in the breath of LC patients, while the number of biomarkers per study were typically around 10-20 compounds. The 15 most common LC biomarkers were (from high to low frequency) acetone, isoprene, hexanal, benzene, butanone, styrene, ethylbenzene, 1-propanol, 2-propanol, toluene, pentanal, 2-pentanone, cyclohexane, nonanal and decane. Several methods showed, in combination with multivariate data analysis, potential to distinguish between LC patients and healthy controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心友儿发布了新的文献求助10
刚刚
2秒前
喜悦的板凳完成签到 ,获得积分10
3秒前
柠檬百香果完成签到,获得积分10
4秒前
害羞的冰激凌完成签到,获得积分10
4秒前
FashionBoy应助Rabbit采纳,获得10
4秒前
水吉2000完成签到,获得积分10
5秒前
5秒前
科研顺利完成签到 ,获得积分10
7秒前
快乐排骨汤完成签到 ,获得积分10
7秒前
walkon210发布了新的文献求助10
7秒前
小河完成签到,获得积分10
8秒前
8秒前
ZBB关闭了ZBB文献求助
9秒前
动人的牛排完成签到 ,获得积分10
10秒前
10秒前
10秒前
shiqi1108完成签到 ,获得积分10
11秒前
13秒前
1111发布了新的文献求助10
13秒前
asdf应助Yolo采纳,获得10
14秒前
像我这样的人完成签到,获得积分10
15秒前
17秒前
科研老兵完成签到,获得积分10
18秒前
流北爷完成签到,获得积分10
18秒前
walkon210完成签到,获得积分20
19秒前
张彤彤发布了新的文献求助10
20秒前
英俊的铭应助llll采纳,获得10
23秒前
23秒前
任世界灯火阑珊完成签到,获得积分10
23秒前
清秀的不言完成签到 ,获得积分10
25秒前
Biofly526发布了新的文献求助30
26秒前
小元发布了新的文献求助10
27秒前
范德萨范德萨关注了科研通微信公众号
27秒前
封似狮完成签到,获得积分10
27秒前
飞翔的梦发布了新的文献求助10
28秒前
芝芝完成签到,获得积分10
30秒前
1111完成签到,获得积分10
31秒前
keyanbaicai发布了新的文献求助10
34秒前
cui完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268