Considerations regarding the selection, sampling, extraction, analysis, and modelling of biomarkers in exhaled breath for early lung cancer screening

化学 呼出气冷凝液 气体分析呼吸 肺癌 选择(遗传算法) 采样(信号处理) 萃取(化学) 色谱法 肺癌筛查 内科学 人工智能 医学 滤波器(信号处理) 哮喘 计算机科学 计算机视觉
作者
Robert Lundberg,Johan Dahlén,Thomas Lundeberg
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:: 116787-116787 被引量:1
标识
DOI:10.1016/j.jpba.2025.116787
摘要

Lung cancer (LC) is the deadliest cancer due to the lack of efficient screening methods that detect the disease early. This review, covering the years 2011 - 2025, summarizes state-of-the-art LC screening through analysis of volatile organic compounds (VOCs) in exhaled breath. All fundamental parts of the methodology are covered, i.e., sampling, analysis, and multivariate data modelling. This review shows that breath is commonly collected in Tedlar® bags and subsequently analysed with solid phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) or sensors. Data analysis has been made using multivariate methods like principal component analysis (PCA) or artificial neural networks (ANNs). The VOCs exhaled by LC patients and healthy subjects are in principle the same. However, concentration levels differ between the two groups. Therefore, LC patients are usually separated from healthy controls through multivariate modelling of a set of VOC biomarkers rather than by individual biomarkers. Although most exhaled VOCs are formed endogenously via metabolic processes and oxidative stress, some compounds also have exogenous origins, which must be taken into consideration. More than 200 different VOCs have been reported as potential biomarkers in the breath of LC patients, while the number of biomarkers per study were typically around 10-20 compounds. The 15 most common LC biomarkers were (from high to low frequency) acetone, isoprene, hexanal, benzene, butanone, styrene, ethylbenzene, 1-propanol, 2-propanol, toluene, pentanal, 2-pentanone, cyclohexane, nonanal and decane. Several methods showed, in combination with multivariate data analysis, potential to distinguish between LC patients and healthy controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助大白天采纳,获得10
1秒前
彭于晏应助眼睛大的鑫磊采纳,获得10
1秒前
Xixicccccccc发布了新的文献求助10
2秒前
3秒前
芬芬完成签到,获得积分10
3秒前
4秒前
mukji发布了新的文献求助10
4秒前
morlison完成签到,获得积分10
5秒前
defef完成签到,获得积分10
5秒前
hoeny发布了新的文献求助10
5秒前
英勇的沛春完成签到 ,获得积分10
6秒前
HLJemm发布了新的文献求助10
8秒前
虚幻双双发布了新的文献求助10
9秒前
9秒前
9秒前
Hello应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
salan应助科研通管家采纳,获得20
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
11秒前
komatsumiho完成签到,获得积分10
11秒前
12秒前
Ava应助暴躁的酸奶采纳,获得10
12秒前
子车茗应助xiaoxiao采纳,获得10
12秒前
科研通AI5应助鲸鱼采纳,获得10
12秒前
12秒前
13秒前
李拾舟发布了新的文献求助10
14秒前
科研通AI5应助饭饭采纳,获得10
14秒前
HLJemm完成签到,获得积分10
15秒前
ww关闭了ww文献求助
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537858
求助须知:如何正确求助?哪些是违规求助? 3972615
关于积分的说明 12306359
捐赠科研通 3639399
什么是DOI,文献DOI怎么找? 2003835
邀请新用户注册赠送积分活动 1039170
科研通“疑难数据库(出版商)”最低求助积分说明 928586