The Breast Cancer Classifier refines molecular breast cancer classification to delineate the HER2-low subtype

乳腺癌 分类器(UML) 癌症 肿瘤科 医学 计算生物学 内科学 人工智能 生物 计算机科学
作者
Polina Turova,Владимир Кушнарев,О. Yu. Baranov,Anna Butusova,Sofia Menshikova,Sheila T. Yong,Anna Nadiryan,Zoya Antysheva,Svetlana Khorkova,Mariia V. Guryleva,Alexander Bagaev,Jochen K. Lennerz,Konstantin Chernyshov,Nikita Kotlov
出处
期刊:NPJ breast cancer [Nature Portfolio]
卷期号:11 (1)
标识
DOI:10.1038/s41523-025-00723-0
摘要

Current breast cancer classification methods, particularly immunohistochemistry and PAM50, face challenges in accurately characterizing the HER2-low subtype, a therapeutically relevant entity with distinct biological features. This notable gap can lead to misclassification, resulting in inappropriate treatment decisions and suboptimal patient outcomes. Leveraging RNA-seq and machine-learning algorithms, we developed the Breast Cancer Classifier (BCC), a unique transcriptomic classifier for more precise breast cancer subtyping, specifically by delineating and incorporating HER2-low as a distinct subtype. BCC also redefined the PAM50 Normal subtype into other subtypes, disputing its classification as a unique molecular group. Our statistical analysis not only confirmed the reproducibility and accuracy of BCC, but also revealed similarities in prognostic characteristics between the HER2-low and Basal subtypes. Addressing this gap in breast cancer classification is clinically significant because it not only improves treatment stratification, but also uncovers novel molecular and immunohistochemical features associated with the HER2-low and HER2-high subtypes, thereby advancing our understanding of breast cancer heterogeneity and providing guidance in precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助rachel03采纳,获得10
刚刚
流浪花发布了新的文献求助20
刚刚
1秒前
苏晚发布了新的文献求助20
1秒前
2秒前
Ling发布了新的文献求助10
4秒前
5秒前
bu完成签到,获得积分10
5秒前
hanihaha发布了新的文献求助10
5秒前
serendipity完成签到,获得积分10
5秒前
wei发布了新的文献求助10
6秒前
传奇3应助hhh采纳,获得10
6秒前
7秒前
大佬完成签到,获得积分10
7秒前
小蘑菇应助jingwen采纳,获得10
7秒前
7秒前
ZTF完成签到,获得积分10
9秒前
文静不评应助zll采纳,获得10
9秒前
9秒前
wzp发布了新的文献求助10
9秒前
9秒前
卡拉蜜儿应助菠菜采纳,获得50
9秒前
鹅帮逮发布了新的文献求助10
10秒前
戈笙gg发布了新的文献求助10
10秒前
freshman3005完成签到,获得积分10
10秒前
Akim应助光亮友安采纳,获得10
10秒前
含蓄朝雪完成签到,获得积分10
11秒前
Billy应助黑色基因采纳,获得30
11秒前
天天快乐应助wei采纳,获得10
12秒前
12秒前
neversay4ever发布了新的文献求助10
12秒前
12秒前
12秒前
杭剑成发布了新的文献求助200
13秒前
123完成签到,获得积分10
13秒前
柯浩天发布了新的文献求助10
13秒前
14秒前
WNL发布了新的文献求助10
14秒前
李健应助虚心半兰采纳,获得10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958799
求助须知:如何正确求助?哪些是违规求助? 3504983
关于积分的说明 11121652
捐赠科研通 3236440
什么是DOI,文献DOI怎么找? 1788768
邀请新用户注册赠送积分活动 871373
科研通“疑难数据库(出版商)”最低求助积分说明 802723