已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision

人工智能 作物 卷积神经网络 计算机科学 农业工程 机器人 机器视觉 深度学习 模式识别(心理学) 农学 生物 工程类
作者
Atinia Hidayah,Syafeeza Ahmad Radzi,Norazlina Abdul Razak,Wira Hidayat Mohd Saad,Yong Chuan Wong,Assia Naja
出处
期刊:Journal of Robotics and Control (JRC) [Universitas Muhammadiyah Yogyakarta]
卷期号:3 (6): 790-799 被引量:1
标识
DOI:10.18196/jrc.v3i6.15948
摘要

Traditionally, the farmers manage the crops from the early growth stage until the mature harvest stage by manually identifying and monitoring plant diseases, nutrient deficiencies, controlled irrigation, and controlled fertilizers and pesticides. Even the farmers have difficulty detecting crop diseases using their naked eyes due to several similar crop diseases. Identifying the correct diseases is crucial since it can improve the quality and quantity of crop production. With the advent of Artificial Intelligence (AI) technology, all crop-managing tasks can be automated using a robot that mimics a farmer's ability. However, designing a robot with human capability, especially in detecting the crop's diseases in real-time, is another challenge to consider. Other research works are focusing on improving the mean average precision and the best result reported so far is 93% of mean Average Precision (mAP) by YOLOv5. This paper focuses on object detection of the Convolutional Neural Network (CNN) architecture-based to detect the disease of solanaceous crops for robot vision. This study's contribution involved reporting the developmental specifics and a suggested solution for issues that appear along with the conducted study. In addition, the output of this study is expected to become the algorithm of the robot's vision. This study uses images of four crops (tomato, potato, eggplant, and pepper), including 23 classes of healthy and diseased crops infected on the leaf and fruits. The dataset utilized combines the public dataset (PlantVillage) and self-collected samples. The total dataset of all 23 classes is 16580 images divided into three parts: training set, validation set, and testing set. The dataset used for training is 88% of the total dataset (15000 images), 8% of the dataset performed a validation process (1400 images), and the rest of the 4% dataset is for the test process (699 images). The performances of YOLOv5 were more robust in terms of 94.2% mAP, and the speed was slightly faster than Scaled-YOLOv4. This object detection-based approach has proven to be a promising solution in efficiently detecting crop disease in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李李李子完成签到 ,获得积分10
1秒前
Tsingyuan完成签到,获得积分10
4秒前
11heys发布了新的文献求助10
5秒前
yuhui完成签到,获得积分10
6秒前
薛定谔的猫完成签到,获得积分10
6秒前
哈比人linling完成签到,获得积分10
6秒前
科研dog完成签到,获得积分10
7秒前
杳鸢完成签到,获得积分0
8秒前
zxcsdfa应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
嗯哼应助科研通管家采纳,获得20
8秒前
9秒前
鱼鱼完成签到 ,获得积分10
13秒前
科研通AI40应助岁岁采纳,获得10
14秒前
Orange应助Tsingyuan采纳,获得10
14秒前
14秒前
14秒前
CodeCraft应助孤独的诗珊采纳,获得30
14秒前
佐佐的2xL发布了新的文献求助10
15秒前
愛研究完成签到,获得积分10
16秒前
早睡早起健康长寿完成签到,获得积分10
19秒前
消烦员完成签到 ,获得积分10
19秒前
水灯霖发布了新的文献求助10
19秒前
kk_1315完成签到,获得积分10
19秒前
20秒前
xiao完成签到 ,获得积分10
21秒前
xylor完成签到 ,获得积分10
22秒前
23秒前
25秒前
若雨凌风完成签到,获得积分10
25秒前
高贵梦秋完成签到,获得积分10
26秒前
444完成签到,获得积分10
27秒前
颛颛完成签到 ,获得积分10
27秒前
赵焱峥完成签到,获得积分10
28秒前
佐佐的2xL完成签到,获得积分10
28秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471302
求助须知:如何正确求助?哪些是违规求助? 3064297
关于积分的说明 9087901
捐赠科研通 2754992
什么是DOI,文献DOI怎么找? 1511689
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423