A Short-term PV Power Forecasting Method based on NWP Correction Considering Meteorological Coupling Correlation

数值天气预报 光伏系统 计算机科学 期限(时间) 气象学 功率(物理) 电力系统 工程类 地理 量子力学 电气工程 物理
作者
Ying Su,Yijun Sun,Y. Heng,Hui Ren,Zhen Zhao,Wang Fei
标识
DOI:10.1109/icps57144.2023.10142105
摘要

Accurate photovoltaic (PV) power forecasting has become one of the key basic technologies to improve the operation quality of power system and reduce the reserve capacity. Accurate Numerical Weather Prediction (NWP) is the important factor for short-term PV power forecasting. However, the accuracy of NWP is sometimes unsatisfactory. Meanwhile, due to various reasons, there were many kinds of anomalies in the measured data of photovoltaic stations, which will lead to the difficulty in obtaining accurate enough forecasting results. In this paper, a NWP correction method considering the coupling correlation of meteorological factors and a short-term photovoltaic power forecasting model based on the correction results are proposed to further improve the prediction accuracy. Firstly, the anomalies are detected and eliminated. Secondly, the optimal forecasting model is trained with the measured meteorological data and power data, meanwhile the optimal combination of meteorological factors is determined. Finally, a short-term PV power forecasting model based on convolutional long-short term memory network (CNN-LSTM) is established. The simulation results show that, compared with the method without optimal meteorological factors determination and NWP correction, the accuracy can be significantly improved by proposed method in this paper. The necessity and effectiveness of NWP correction are also verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助奚奚采纳,获得10
1秒前
2秒前
3秒前
hh发布了新的文献求助10
3秒前
乔佳怡发布了新的文献求助10
3秒前
文静勒应助aaaaa小柴采纳,获得50
4秒前
大个应助泰山球迷采纳,获得10
4秒前
dw发布了新的文献求助10
6秒前
lalala发布了新的文献求助10
8秒前
8秒前
浮游应助lc339采纳,获得10
8秒前
杨冀军完成签到 ,获得积分10
10秒前
10秒前
我是老大应助永梦双星采纳,获得10
11秒前
11秒前
小呆完成签到 ,获得积分10
11秒前
欢呼的芹发布了新的文献求助10
11秒前
12秒前
hh完成签到,获得积分10
12秒前
科研通AI6应助yixin采纳,获得10
12秒前
夏cai发布了新的文献求助30
13秒前
13秒前
14秒前
mnm发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
无极微光发布了新的文献求助20
16秒前
16秒前
17秒前
badjack发布了新的文献求助20
17秒前
ZunyeLiu发布了新的文献求助10
17秒前
18秒前
乔佳怡完成签到,获得积分10
18秒前
Rachel发布了新的文献求助10
18秒前
xin发布了新的文献求助10
19秒前
彭于晏应助mnm采纳,获得10
20秒前
乔达摩完成签到 ,获得积分0
21秒前
CipherSage应助dw采纳,获得10
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687