A Short-term PV Power Forecasting Method based on NWP Correction Considering Meteorological Coupling Correlation

数值天气预报 光伏系统 计算机科学 期限(时间) 气象学 功率(物理) 电力系统 工程类 地理 量子力学 电气工程 物理
作者
Ying Su,Yijun Sun,Y. Heng,Hui Ren,Zhen Zhao,Wang Fei
标识
DOI:10.1109/icps57144.2023.10142105
摘要

Accurate photovoltaic (PV) power forecasting has become one of the key basic technologies to improve the operation quality of power system and reduce the reserve capacity. Accurate Numerical Weather Prediction (NWP) is the important factor for short-term PV power forecasting. However, the accuracy of NWP is sometimes unsatisfactory. Meanwhile, due to various reasons, there were many kinds of anomalies in the measured data of photovoltaic stations, which will lead to the difficulty in obtaining accurate enough forecasting results. In this paper, a NWP correction method considering the coupling correlation of meteorological factors and a short-term photovoltaic power forecasting model based on the correction results are proposed to further improve the prediction accuracy. Firstly, the anomalies are detected and eliminated. Secondly, the optimal forecasting model is trained with the measured meteorological data and power data, meanwhile the optimal combination of meteorological factors is determined. Finally, a short-term PV power forecasting model based on convolutional long-short term memory network (CNN-LSTM) is established. The simulation results show that, compared with the method without optimal meteorological factors determination and NWP correction, the accuracy can be significantly improved by proposed method in this paper. The necessity and effectiveness of NWP correction are also verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的念桃完成签到 ,获得积分10
刚刚
1秒前
2秒前
晚意发布了新的文献求助10
3秒前
4秒前
luyuhao3完成签到,获得积分10
5秒前
5秒前
负责吃饭发布了新的文献求助10
5秒前
简单的易云完成签到,获得积分10
5秒前
朴素的不乐完成签到 ,获得积分10
5秒前
高傲的小飞龙完成签到,获得积分10
5秒前
8秒前
8秒前
科研通AI2S应助正太低音炮采纳,获得10
9秒前
Zon完成签到,获得积分10
11秒前
11秒前
111完成签到,获得积分10
12秒前
tyl完成签到 ,获得积分10
12秒前
carat发布了新的文献求助10
13秒前
13秒前
Zon发布了新的文献求助10
14秒前
ChenyuTian完成签到 ,获得积分10
15秒前
Lucas应助超越好帅采纳,获得10
19秒前
111发布了新的文献求助10
20秒前
上岸上岸上岸完成签到,获得积分10
20秒前
20秒前
22秒前
26秒前
诸葛书虫完成签到 ,获得积分10
26秒前
走着完成签到,获得积分10
26秒前
26秒前
喜悦的元正完成签到,获得积分10
28秒前
LR123完成签到,获得积分20
28秒前
刘亚茹发布了新的文献求助10
30秒前
31秒前
超越好帅发布了新的文献求助10
31秒前
科研通AI2S应助LuoYR@SZU采纳,获得10
33秒前
来者完成签到,获得积分10
33秒前
灰色白面鸮完成签到,获得积分10
34秒前
汉堡包应助正太低音炮采纳,获得10
35秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266021
求助须知:如何正确求助?哪些是违规求助? 2905843
关于积分的说明 8335622
捐赠科研通 2576229
什么是DOI,文献DOI怎么找? 1400372
科研通“疑难数据库(出版商)”最低求助积分说明 654757
邀请新用户注册赠送积分活动 633563