亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence in Minimally Invasive Adrenalectomy: Using Deep Learning to Identify the Left Adrenal Vein

人工智能 医学 肾上腺切除术 放射科 外科 计算机科学
作者
Berke Şengün,Yalın İşcan,G. Ozbulak,Nida Kumbasar,Emre Eğriboz,İsmail Cem Sormaz,Nihat Aksakal,Sencer M. Deniz,Mehmet Haklıdır,Fatih Tunca,Yasemin Giles Şenyürek
出处
期刊:Surgical laparoscopy, endoscopy & percutaneous techniques [Lippincott Williams & Wilkins]
卷期号:33 (4): 327-331 被引量:3
标识
DOI:10.1097/sle.0000000000001185
摘要

Background: Minimally invasive adrenalectomy is the main surgical treatment option for the resection of adrenal masses. Recognition and ligation of adrenal veins are critical parts of adrenal surgery. The utilization of artificial intelligence and deep learning algorithms to identify anatomic structures during laparoscopic and robot-assisted surgery can be used to provide real-time guidance. Methods: In this experimental feasibility study, intraoperative videos of patients who underwent minimally invasive transabdominal left adrenalectomy procedures between 2011 and 2022 in a tertiary endocrine referral center were retrospectively analyzed and used to develop an artificial intelligence model. Semantic segmentation of the left adrenal vein with deep learning was performed. To train a model, 50 random images per patient were captured during the identification and dissection of the left adrenal vein. A randomly selected 70% of data was used to train models while 15% for testing and 15% for validation with 3 efficient stage-wise feature pyramid networks (ESFPNet). Dice similarity coefficient (DSC) and intersection over union scores were used to evaluate segmentation accuracy. Results: A total of 40 videos were analyzed. Annotation of the left adrenal vein was performed in 2000 images. The segmentation network training on 1400 images was used to identify the left adrenal vein in 300 test images. The mean DSC and sensitivity for the highest scoring efficient stage-wise feature pyramid network B-2 network were 0.77 (±0.16 SD) and 0.82 (±0.15 SD), respectively, while the maximum DSC was 0.93, suggesting a successful prediction of anatomy. Conclusions: Deep learning algorithms can predict the left adrenal vein anatomy with high performance and can potentially be utilized to identify critical anatomy during adrenal surgery and provide real-time guidance in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
3秒前
菜鸡5号完成签到,获得积分10
4秒前
醉书生应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
醉书生应助科研通管家采纳,获得10
8秒前
十七发布了新的文献求助10
8秒前
9秒前
dabaopinkman发布了新的文献求助10
9秒前
MDW完成签到,获得积分20
14秒前
psyYang完成签到,获得积分10
14秒前
丘比特应助张玮采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
22秒前
22秒前
十七完成签到,获得积分20
22秒前
凯文完成签到 ,获得积分10
23秒前
25秒前
26秒前
ymbb发布了新的文献求助10
28秒前
华风发布了新的文献求助10
28秒前
保卫时光发布了新的文献求助10
28秒前
大力怜容完成签到 ,获得积分10
29秒前
乐乐发布了新的文献求助10
29秒前
drbrianlau发布了新的文献求助10
31秒前
学不完了完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
复杂不二完成签到,获得积分10
36秒前
十七关注了科研通微信公众号
36秒前
保卫时光完成签到,获得积分10
37秒前
39秒前
42秒前
支翰完成签到 ,获得积分10
43秒前
嘟嘟嘟嘟完成签到 ,获得积分10
44秒前
Nightangie完成签到,获得积分10
45秒前
张玮发布了新的文献求助10
45秒前
彭于晏应助ymbb采纳,获得10
45秒前
45秒前
可爱的函函应助俊逸雪瑶采纳,获得10
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762737
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185