RDKG-115: Assisting drug repurposing and discovery for rare diseases by trimodal knowledge graph embedding

药物重新定位 重新调整用途 计算机科学 药物发现 图形 药品 嵌入 利用 机器学习 人工智能 医学 生物信息学 理论计算机科学 药理学 生物 生态学 计算机安全
作者
Chaoyu Zhu,Xiaoqiong Xia,Nan Li,Fan Zhong,Zhihao Yang,Lei Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107262-107262 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107262
摘要

Rare diseases (RDs) may affect individuals in small numbers, but they have a significant impact on a global scale. Accurate diagnosis of RDs is challenging, and there is a severe lack of drugs available for treatment. Pharmaceutical companies have shown a preference for drug repurposing from existing drugs developed for other diseases due to the high investment, high risk, and long cycle involved in RD drug development. Compared to traditional approaches, knowledge graph embedding (KGE) based methods are more efficient and convenient, as they treat drug repurposing as a link prediction task. KGE models allow for the enrichment of existing knowledge by incorporating multimodal information from various sources. In this study, we constructed RDKG-115, a rare disease knowledge graph involving 115 RDs, composed of 35,643 entities, 25 relations, and 5,539,839 refined triplets, based on 372,384 high-quality literature and 4 biomedical datasets: DRKG, Pathway Commons, PharmKG, and PMapp. Subsequently, we developed a trimodal KGE model containing structure, category, and description embeddings using reverse-hyperplane projection. We utilized this model to infer 4199 reliable new inferred triplets from RDKG-115. Finally, we calculated potential drugs and small molecules for each of the 115 RDs, taking multiple sclerosis as a case study. This study provides a paradigm for large-scale screening of drug repurposing and discovery for RDs, which will speed up the drug development process and ultimately benefit patients with RDs. The source code and data are available at https://github.com/ZhuChaoY/RDKG-115.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIU发布了新的文献求助10
刚刚
FashionBoy应助希勤采纳,获得10
1秒前
wxywxy发布了新的文献求助10
2秒前
健忘的谷冬完成签到 ,获得积分20
3秒前
dan应助巴拉巴拉采纳,获得10
4秒前
4秒前
5秒前
5秒前
许可完成签到,获得积分20
5秒前
chen完成签到,获得积分10
5秒前
宋志远完成签到,获得积分10
7秒前
8秒前
8秒前
NexusExplorer应助wxywxy采纳,获得30
8秒前
肉肉完成签到 ,获得积分10
9秒前
qq.com发布了新的文献求助10
10秒前
马森完成签到,获得积分10
11秒前
怕黑的立轩完成签到,获得积分10
12秒前
科研通AI2S应助研友_Z119gZ采纳,获得10
12秒前
可可西里完成签到 ,获得积分10
12秒前
13秒前
希望天下0贩的0应助ktk采纳,获得10
13秒前
strong.quite完成签到,获得积分10
14秒前
14秒前
maple完成签到,获得积分10
14秒前
打打应助阔达的盼波采纳,获得10
15秒前
16秒前
Pjmeng完成签到,获得积分10
16秒前
安安完成签到,获得积分10
16秒前
坚定白筠关注了科研通微信公众号
17秒前
小小小新发布了新的文献求助10
17秒前
11122333完成签到 ,获得积分10
18秒前
18秒前
隐形的敏发布了新的文献求助10
20秒前
hss完成签到,获得积分10
20秒前
21秒前
QYW发布了新的文献求助10
21秒前
小喵发布了新的文献求助10
21秒前
婳祎完成签到 ,获得积分10
22秒前
wxywxy完成签到,获得积分20
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023