MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare

计算机科学 成对比较 超图 领域知识 医学诊断 机器学习 人工智能 稳健性(进化) 编码(集合论) 领域(数学) 医学分类 集合(抽象数据类型) 数据挖掘 医学 生物化学 化学 护理部 离散数学 病理 纯数学 基因 程序设计语言 数学
作者
Jialun Wu,Kai He,Rui Mao,Chen Li,Erik Cambria
出处
期刊:Information Fusion [Elsevier BV]
卷期号:100: 101939-101939 被引量:18
标识
DOI:10.1016/j.inffus.2023.101939
摘要

Predicting a patient's future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction capabilities, graph representation learning can capture complex relationships and achieve promising performance in many clinical prediction tasks. However, existing works either exclusively consider single domain knowledge with an independent task or do not fully capitalize on domain knowledge that can provide more predictive signals in the code encoding stage. Moreover, the heterogeneous and high-dimensional nature of EHR data leads to a deficiency of hardly encoding implicit high-order correlations. To address these limitations, we proposed a knowledge-guided Multi-viEw hyperGrAph predictive framework (MEGACare) for diagnosis prediction and medication recommendation. Our MEGACare leveraged multi-faceted medical knowledge, including ontology structure, code description, and molecular information to enhance medical code presentations. Furthermore, we constructed an EHR hypergraph and a multi-view learning framework to capture the high-order correlation between patient visits and medical codes. Specifically, we propose three perspectives around the pairwise relationship between patient visits and medical codes to comprehensively learn patient representation and enhance the robustness of our framework. We evaluated our MEGACare framework against a set of state-of-the-art methods for two clinical outcome prediction tasks in the public MIMIC-III dataset, and the results showed that our proposed framework was superior to the baseline methods.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥特超曼应助十七采纳,获得10
1秒前
1秒前
2秒前
活力鸡完成签到,获得积分10
2秒前
NexusExplorer应助yang采纳,获得10
3秒前
3秒前
英姑应助泥嚎采纳,获得10
3秒前
夜猫酱酱子完成签到,获得积分10
3秒前
imkhun1021发布了新的文献求助10
5秒前
mingming发布了新的文献求助10
6秒前
7秒前
黎雪芳完成签到,获得积分10
7秒前
8秒前
imkhun1021完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
张雯思发布了新的文献求助10
11秒前
爆米花应助小明采纳,获得10
11秒前
我很厉害的完成签到,获得积分10
13秒前
深情安青应助mingming采纳,获得10
13秒前
典雅长颈鹿完成签到,获得积分10
13秒前
Akim应助断棍豪斯采纳,获得10
15秒前
bxbxbx发布了新的文献求助10
16秒前
章宇发布了新的文献求助10
16秒前
少爷完成签到,获得积分10
17秒前
温暖烨霖完成签到,获得积分10
18秒前
19秒前
21秒前
黎明发布了新的文献求助10
23秒前
23秒前
24秒前
jzs完成签到 ,获得积分10
25秒前
28秒前
sxx发布了新的文献求助10
28秒前
断棍豪斯发布了新的文献求助10
28秒前
29秒前
微笑芷蕾发布了新的文献求助10
30秒前
xiaoyuanbao1988应助jingxian采纳,获得10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176