MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare

计算机科学 成对比较 超图 领域知识 医学诊断 机器学习 人工智能 稳健性(进化) 编码(集合论) 领域(数学) 医学分类 集合(抽象数据类型) 数据挖掘 医学 病理 护理部 离散数学 化学 程序设计语言 纯数学 基因 生物化学 数学
作者
Jialun Wu,Kai He,Rui Mao,Chen Li,Erik Cambria
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101939-101939 被引量:28
标识
DOI:10.1016/j.inffus.2023.101939
摘要

Predicting a patient's future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction capabilities, graph representation learning can capture complex relationships and achieve promising performance in many clinical prediction tasks. However, existing works either exclusively consider single domain knowledge with an independent task or do not fully capitalize on domain knowledge that can provide more predictive signals in the code encoding stage. Moreover, the heterogeneous and high-dimensional nature of EHR data leads to a deficiency of hardly encoding implicit high-order correlations. To address these limitations, we proposed a knowledge-guided Multi-viEw hyperGrAph predictive framework (MEGACare) for diagnosis prediction and medication recommendation. Our MEGACare leveraged multi-faceted medical knowledge, including ontology structure, code description, and molecular information to enhance medical code presentations. Furthermore, we constructed an EHR hypergraph and a multi-view learning framework to capture the high-order correlation between patient visits and medical codes. Specifically, we propose three perspectives around the pairwise relationship between patient visits and medical codes to comprehensively learn patient representation and enhance the robustness of our framework. We evaluated our MEGACare framework against a set of state-of-the-art methods for two clinical outcome prediction tasks in the public MIMIC-III dataset, and the results showed that our proposed framework was superior to the baseline methods.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
55发布了新的文献求助10
刚刚
1秒前
1秒前
鱼莉完成签到,获得积分10
1秒前
2秒前
华仔应助李存采纳,获得10
4秒前
4秒前
5秒前
6秒前
李健的小迷弟应助Eric采纳,获得10
7秒前
CCC发布了新的文献求助10
9秒前
汉堡包应助cara33采纳,获得10
11秒前
脑洞疼应助lumei661314采纳,获得10
11秒前
12秒前
今后应助忧郁的鱿鱼采纳,获得10
12秒前
13秒前
13秒前
生动友容发布了新的文献求助10
13秒前
露露露完成签到,获得积分10
14秒前
15秒前
ppwq完成签到 ,获得积分10
15秒前
华仔应助seven采纳,获得10
15秒前
香蕉觅云应助LEMON采纳,获得10
16秒前
纪震宇发布了新的文献求助10
16秒前
生动娩发布了新的文献求助10
16秒前
阳光雨完成签到,获得积分10
16秒前
LongH2完成签到,获得积分10
16秒前
17秒前
18秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
lelouch发布了新的文献求助10
21秒前
嘿嘿应助Eric采纳,获得10
22秒前
CCC发布了新的文献求助10
22秒前
传奇3应助ZSC采纳,获得10
24秒前
26秒前
9999完成签到,获得积分10
27秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783