MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare

计算机科学 成对比较 超图 领域知识 医学诊断 机器学习 人工智能 稳健性(进化) 编码(集合论) 领域(数学) 医学分类 集合(抽象数据类型) 数据挖掘 医学 生物化学 化学 护理部 离散数学 病理 纯数学 基因 程序设计语言 数学
作者
Jialun Wu,Kai He,Rui Mao,Chen Li,Erik Cambria
出处
期刊:Information Fusion [Elsevier BV]
卷期号:100: 101939-101939 被引量:18
标识
DOI:10.1016/j.inffus.2023.101939
摘要

Predicting a patient's future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction capabilities, graph representation learning can capture complex relationships and achieve promising performance in many clinical prediction tasks. However, existing works either exclusively consider single domain knowledge with an independent task or do not fully capitalize on domain knowledge that can provide more predictive signals in the code encoding stage. Moreover, the heterogeneous and high-dimensional nature of EHR data leads to a deficiency of hardly encoding implicit high-order correlations. To address these limitations, we proposed a knowledge-guided Multi-viEw hyperGrAph predictive framework (MEGACare) for diagnosis prediction and medication recommendation. Our MEGACare leveraged multi-faceted medical knowledge, including ontology structure, code description, and molecular information to enhance medical code presentations. Furthermore, we constructed an EHR hypergraph and a multi-view learning framework to capture the high-order correlation between patient visits and medical codes. Specifically, we propose three perspectives around the pairwise relationship between patient visits and medical codes to comprehensively learn patient representation and enhance the robustness of our framework. We evaluated our MEGACare framework against a set of state-of-the-art methods for two clinical outcome prediction tasks in the public MIMIC-III dataset, and the results showed that our proposed framework was superior to the baseline methods.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静一曲完成签到 ,获得积分10
2秒前
阿月完成签到,获得积分10
2秒前
跳跃虔发布了新的文献求助10
2秒前
开放的煎蛋完成签到,获得积分20
2秒前
弯弯完成签到,获得积分10
3秒前
mz完成签到 ,获得积分10
4秒前
7秒前
小党完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
鸿俦鹤侣完成签到,获得积分10
9秒前
9秒前
Liufgui应助xinyue946983采纳,获得10
11秒前
11秒前
跳跃虔完成签到,获得积分20
11秒前
Liufgui应助Mandy采纳,获得10
12秒前
12秒前
duduguai发布了新的文献求助20
13秒前
李健应助yun采纳,获得10
15秒前
ZJY发布了新的文献求助10
16秒前
22关注了科研通微信公众号
18秒前
19秒前
19秒前
英姑应助ZJY采纳,获得10
20秒前
小蘑菇应助hhhh采纳,获得30
23秒前
听话的惜梦完成签到,获得积分10
26秒前
cherry bomb完成签到,获得积分10
26秒前
27秒前
29秒前
进步发布了新的文献求助10
30秒前
克林沙星完成签到,获得积分10
31秒前
31秒前
34秒前
李健的小迷弟应助十一采纳,获得10
35秒前
黄耀完成签到,获得积分10
36秒前
36秒前
多情含灵发布了新的文献求助10
37秒前
flow完成签到,获得积分10
39秒前
Kelsey完成签到 ,获得积分10
39秒前
湛湛发布了新的文献求助10
40秒前
dreamer发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068