MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare

计算机科学 成对比较 超图 领域知识 医学诊断 机器学习 人工智能 稳健性(进化) 编码(集合论) 领域(数学) 医学分类 集合(抽象数据类型) 数据挖掘 医学 生物化学 化学 护理部 离散数学 病理 纯数学 基因 程序设计语言 数学
作者
Jialun Wu,Kai He,Rui Mao,Chen Li,Erik Cambria
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101939-101939 被引量:18
标识
DOI:10.1016/j.inffus.2023.101939
摘要

Predicting a patient's future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction capabilities, graph representation learning can capture complex relationships and achieve promising performance in many clinical prediction tasks. However, existing works either exclusively consider single domain knowledge with an independent task or do not fully capitalize on domain knowledge that can provide more predictive signals in the code encoding stage. Moreover, the heterogeneous and high-dimensional nature of EHR data leads to a deficiency of hardly encoding implicit high-order correlations. To address these limitations, we proposed a knowledge-guided Multi-viEw hyperGrAph predictive framework (MEGACare) for diagnosis prediction and medication recommendation. Our MEGACare leveraged multi-faceted medical knowledge, including ontology structure, code description, and molecular information to enhance medical code presentations. Furthermore, we constructed an EHR hypergraph and a multi-view learning framework to capture the high-order correlation between patient visits and medical codes. Specifically, we propose three perspectives around the pairwise relationship between patient visits and medical codes to comprehensively learn patient representation and enhance the robustness of our framework. We evaluated our MEGACare framework against a set of state-of-the-art methods for two clinical outcome prediction tasks in the public MIMIC-III dataset, and the results showed that our proposed framework was superior to the baseline methods.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
yu完成签到,获得积分10
4秒前
sun发布了新的文献求助10
6秒前
Ling完成签到,获得积分10
6秒前
科研通AI2S应助yyt采纳,获得20
7秒前
充电宝应助青柠采纳,获得10
8秒前
Owen应助yang采纳,获得10
9秒前
李嘉琪发布了新的文献求助10
12秒前
chenchen发布了新的文献求助10
12秒前
sun完成签到,获得积分20
13秒前
屈绮兰应助Magic采纳,获得50
14秒前
14秒前
毛先生发布了新的文献求助10
15秒前
张岱帅z完成签到 ,获得积分10
16秒前
shanjianjie发布了新的文献求助20
17秒前
zzc发布了新的文献求助10
18秒前
傻傻的语海完成签到,获得积分10
19秒前
LinglongCai完成签到 ,获得积分10
20秒前
李嘉琪完成签到,获得积分10
20秒前
Orange应助jiudai采纳,获得10
21秒前
震动的曲奇完成签到,获得积分10
23秒前
C.Z.Young完成签到,获得积分0
23秒前
2810527600完成签到,获得积分10
25秒前
天天快乐应助qq.com采纳,获得10
28秒前
29秒前
ygx发布了新的文献求助10
30秒前
多多发布了新的文献求助10
33秒前
34秒前
34秒前
香蕉觅云应助llq采纳,获得10
36秒前
Jasper应助坤儿采纳,获得10
37秒前
酷波er应助药大小金鱼采纳,获得10
38秒前
CodeCraft应助多多采纳,获得10
40秒前
Sylvia关注了科研通微信公众号
41秒前
lulu完成签到,获得积分10
41秒前
42秒前
42秒前
chenchen发布了新的文献求助10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352191
求助须知:如何正确求助?哪些是违规求助? 2977475
关于积分的说明 8679676
捐赠科研通 2658452
什么是DOI,文献DOI怎么找? 1455793
科研通“疑难数据库(出版商)”最低求助积分说明 674095
邀请新用户注册赠送积分活动 664651