Nonlinear Aeroelastic Prediction in Transonic Buffeting Flow by Deep Neural Network

气动弹性 跨音速 空气动力学 翼型 计算流体力学 非线性系统 空气动力 计算机科学 控制理论(社会学) 机械 结构工程 物理 工程类 控制(管理) 量子力学 人工智能
作者
Zihao Dou,Chuanqiang Gao,Weiwei Zhang,Yang Tao
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (6): 2412-2429 被引量:15
标识
DOI:10.2514/1.j061946
摘要

Transonic buffet is an aerodynamic phenomenon of self-sustained shock oscillations. The aeroelastic problem caused by it is very complex, including two different dynamic modes: forced vibration and frequency lock-in. The vibration of the structure has a negative influence on the fatigue life of the aircraft. Especially in the region of frequency lock-in, the limit cycle oscillations occur due to the instability of the structural mode. Researchers have accurately predicted the region of frequency lock-in in transonic buffet and have clarified its mechanism by using a linear aerodynamic model. However, the nonlinear aeroelastic modeling and prediction of the transonic buffet remain to be solved. The long short-term memory (LSTM) deep neural network is suitable for predicting the time-delayed effects of unsteady aerodynamics. And it has achieved remarkable results in sequential data modeling. In the present work, a nonlinear model is developed for the aeroelastic system with NACA0012 airfoil in transonic buffeting flow and validated with the coupled computational fluid dynamics/computational structural dynamics (CFD/CSD) simulation. First, the data set and the loss function are specially designed. Then, the reduced-order model (ROM) based on the LSTM of the flow is built by using unsteady Reynolds-averaged Navier–Stokes computations data in a post-buffet state. By coupling the ROM and the single degree-of-freedom equation for the pitching angle, the nonlinear aeroelastic model is finally produced. The results show that the phenomenon of frequency lock-in and the self-sustained buffeting aerodynamics are precisely reconstructed. And the model has a strong generalization ability and can reproduce complex vibrations caused by competition between different modes. In short, the model can replace the CFD/CSD method in the current case with high efficiency and accuracy. The method can be used for modeling and prediction of other various complex aeroelastic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
没有熬夜发布了新的文献求助10
1秒前
依依完成签到,获得积分10
1秒前
2秒前
科研小白发布了新的文献求助10
2秒前
maoamo2024发布了新的文献求助10
3秒前
3秒前
mysci完成签到,获得积分10
3秒前
4秒前
高兴可乐完成签到,获得积分20
4秒前
enterdawn完成签到,获得积分10
4秒前
4秒前
D调的华丽完成签到,获得积分10
4秒前
陈思雨发布了新的文献求助10
4秒前
5秒前
Clare发布了新的文献求助10
6秒前
6秒前
咩咩完成签到,获得积分10
6秒前
7秒前
8秒前
Jerome完成签到,获得积分20
8秒前
8秒前
酷波er应助乐观文轩采纳,获得10
8秒前
标致雪碧发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
jiayu发布了新的文献求助30
12秒前
12秒前
13秒前
浮晨完成签到,获得积分10
14秒前
14秒前
bkagyin应助书生采纳,获得30
15秒前
Jerome发布了新的文献求助10
15秒前
15秒前
鲲鹏戏龙完成签到,获得积分10
15秒前
16秒前
杨佳莉发布了新的文献求助10
16秒前
fasdf应助Vivian采纳,获得10
16秒前
标致雪碧完成签到,获得积分10
16秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700164
关于积分的说明 14906941
捐赠科研通 4741703
什么是DOI,文献DOI怎么找? 2548025
邀请新用户注册赠送积分活动 1511771
关于科研通互助平台的介绍 1473781