Nonlinear Aeroelastic Prediction in Transonic Buffeting Flow by Deep Neural Network

气动弹性 跨音速 空气动力学 翼型 计算流体力学 非线性系统 空气动力 计算机科学 控制理论(社会学) 机械 结构工程 物理 工程类 控制(管理) 量子力学 人工智能
作者
Zihao Dou,Chuanqiang Gao,Weiwei Zhang,Yang Tao
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (6): 2412-2429
标识
DOI:10.2514/1.j061946
摘要

Transonic buffet is an aerodynamic phenomenon of self-sustained shock oscillations. The aeroelastic problem caused by it is very complex, including two different dynamic modes: forced vibration and frequency lock-in. The vibration of the structure has a negative influence on the fatigue life of the aircraft. Especially in the region of frequency lock-in, the limit cycle oscillations occur due to the instability of the structural mode. Researchers have accurately predicted the region of frequency lock-in in transonic buffet and have clarified its mechanism by using a linear aerodynamic model. However, the nonlinear aeroelastic modeling and prediction of the transonic buffet remain to be solved. The long short-term memory (LSTM) deep neural network is suitable for predicting the time-delayed effects of unsteady aerodynamics. And it has achieved remarkable results in sequential data modeling. In the present work, a nonlinear model is developed for the aeroelastic system with NACA0012 airfoil in transonic buffeting flow and validated with the coupled computational fluid dynamics/computational structural dynamics (CFD/CSD) simulation. First, the data set and the loss function are specially designed. Then, the reduced-order model (ROM) based on the LSTM of the flow is built by using unsteady Reynolds-averaged Navier–Stokes computations data in a post-buffet state. By coupling the ROM and the single degree-of-freedom equation for the pitching angle, the nonlinear aeroelastic model is finally produced. The results show that the phenomenon of frequency lock-in and the self-sustained buffeting aerodynamics are precisely reconstructed. And the model has a strong generalization ability and can reproduce complex vibrations caused by competition between different modes. In short, the model can replace the CFD/CSD method in the current case with high efficiency and accuracy. The method can be used for modeling and prediction of other various complex aeroelastic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AMzzZ完成签到 ,获得积分10
刚刚
刚刚
Owen应助激情的含巧采纳,获得10
刚刚
恐龙完成签到 ,获得积分10
刚刚
乐天林完成签到 ,获得积分10
1秒前
共享精神应助周周采纳,获得10
1秒前
1秒前
Gun完成签到 ,获得积分10
2秒前
3秒前
碧蓝雨安完成签到,获得积分10
3秒前
gms完成签到,获得积分10
3秒前
3秒前
aaa完成签到,获得积分10
3秒前
王鑫完成签到,获得积分10
4秒前
贪玩丸子完成签到,获得积分10
4秒前
Ruuo616完成签到 ,获得积分10
4秒前
sisihhh发布了新的文献求助10
4秒前
5秒前
Min完成签到,获得积分10
5秒前
hogluins发布了新的文献求助10
5秒前
kwm完成签到,获得积分10
6秒前
xinruru发布了新的文献求助30
6秒前
JY'关闭了JY'文献求助
7秒前
一亩蔬菜完成签到,获得积分10
7秒前
霸王龙完成签到,获得积分10
7秒前
7秒前
小洋同学可能不在完成签到,获得积分10
7秒前
Skyrin完成签到,获得积分0
9秒前
扶光发布了新的文献求助10
9秒前
9秒前
阔达的海完成签到,获得积分10
10秒前
10秒前
辣辣完成签到 ,获得积分10
10秒前
xyxsmile完成签到,获得积分10
10秒前
执念完成签到,获得积分10
11秒前
11秒前
dm完成签到 ,获得积分10
11秒前
SciGPT应助给好评采纳,获得10
11秒前
shawn完成签到 ,获得积分10
11秒前
yihuifa发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259