Nonlinear Aeroelastic Prediction in Transonic Buffeting Flow by Deep Neural Network

气动弹性 跨音速 空气动力学 翼型 计算流体力学 非线性系统 空气动力 计算机科学 控制理论(社会学) 机械 结构工程 物理 工程类 控制(管理) 量子力学 人工智能
作者
Zihao Dou,Chuanqiang Gao,Weiwei Zhang,Yang Tao
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (6): 2412-2429 被引量:15
标识
DOI:10.2514/1.j061946
摘要

Transonic buffet is an aerodynamic phenomenon of self-sustained shock oscillations. The aeroelastic problem caused by it is very complex, including two different dynamic modes: forced vibration and frequency lock-in. The vibration of the structure has a negative influence on the fatigue life of the aircraft. Especially in the region of frequency lock-in, the limit cycle oscillations occur due to the instability of the structural mode. Researchers have accurately predicted the region of frequency lock-in in transonic buffet and have clarified its mechanism by using a linear aerodynamic model. However, the nonlinear aeroelastic modeling and prediction of the transonic buffet remain to be solved. The long short-term memory (LSTM) deep neural network is suitable for predicting the time-delayed effects of unsteady aerodynamics. And it has achieved remarkable results in sequential data modeling. In the present work, a nonlinear model is developed for the aeroelastic system with NACA0012 airfoil in transonic buffeting flow and validated with the coupled computational fluid dynamics/computational structural dynamics (CFD/CSD) simulation. First, the data set and the loss function are specially designed. Then, the reduced-order model (ROM) based on the LSTM of the flow is built by using unsteady Reynolds-averaged Navier–Stokes computations data in a post-buffet state. By coupling the ROM and the single degree-of-freedom equation for the pitching angle, the nonlinear aeroelastic model is finally produced. The results show that the phenomenon of frequency lock-in and the self-sustained buffeting aerodynamics are precisely reconstructed. And the model has a strong generalization ability and can reproduce complex vibrations caused by competition between different modes. In short, the model can replace the CFD/CSD method in the current case with high efficiency and accuracy. The method can be used for modeling and prediction of other various complex aeroelastic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助学术小子采纳,获得10
刚刚
yyx完成签到 ,获得积分10
1秒前
哭泣的幼蓉完成签到 ,获得积分10
1秒前
great7701完成签到,获得积分10
2秒前
Ray发布了新的文献求助10
3秒前
糯米糕完成签到 ,获得积分10
3秒前
4秒前
曹先生完成签到,获得积分10
4秒前
导师老八发布了新的文献求助10
5秒前
可爱的小丸子完成签到,获得积分10
6秒前
9秒前
路在脚下完成签到 ,获得积分10
9秒前
拼搏尔风完成签到,获得积分10
12秒前
chinbaor完成签到,获得积分10
12秒前
justin完成签到,获得积分10
12秒前
lcjynwe完成签到,获得积分10
13秒前
14秒前
学术小子发布了新的文献求助10
15秒前
思绪摸摸头完成签到 ,获得积分10
16秒前
16秒前
江苏吴世勋完成签到,获得积分10
17秒前
小面包儿完成签到,获得积分0
17秒前
赵一完成签到,获得积分10
18秒前
tony完成签到,获得积分10
21秒前
ChenYifei完成签到,获得积分10
21秒前
雾色笼晓树苍完成签到 ,获得积分10
23秒前
23秒前
科研通AI6应助孙友浩采纳,获得10
27秒前
俏皮诺言完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
29秒前
xlk2222完成签到,获得积分10
31秒前
31秒前
Gu发布了新的文献求助10
32秒前
励志发SCI完成签到 ,获得积分10
32秒前
星辰大海应助学林书屋采纳,获得10
32秒前
wyz完成签到 ,获得积分10
33秒前
CC努力搞科研完成签到,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044703
求助须知:如何正确求助?哪些是违规求助? 4274263
关于积分的说明 13323482
捐赠科研通 4087994
什么是DOI,文献DOI怎么找? 2236646
邀请新用户注册赠送积分活动 1244030
关于科研通互助平台的介绍 1172086