化学
氨苄西林
色谱法
舒巴坦钠
选择性反应监测
串联质谱法
克林霉素
分析物
质谱法
抗生素
抗生素耐药性
生物化学
亚胺培南
作者
Maximilian Stapf,Anton Straub,Markus Fischer,Christian Linz,Stefan Hartmann,Oliver Scherf‐Clavel
标识
DOI:10.1016/j.jpba.2022.115167
摘要
Ampicillin in combination with sulbactam is a widely used drug choice for infection prophylaxis, especially in oral and maxillofacial surgery. Clindamycin serves as an alternative in patients with known allergy to β-lactam antibiotics. To ensure effective prophylaxis, it is important to achieve sufficiently high concentrations of active antibiotic substances in the tissues affected by the surgery. To this end, a LC-MS/MS method was developed and validated that allows the quantification of ampicillin, sulbactam and clindamycin in jawbone, plasma, and so-called platelet-rich fibrin (PRF). Validation was performed in accordance with the European Medicines Agency guidelines for bioanalytical method validation. For all matrices, sample processing was carried out by protein precipitation with acetonitrile or methanol 80%, containing the isotope labelled internal standards (IS) of the three drugs. Analytes were separated on a pentaflourophenyl column at 20 °C using gradient elution. Furthermore, detection was accomplished by electrospray ionisation in positive-ion mode (ampicillin, clindamycin and corresponding IS) and negative-ion mode (sulbactam and corresponding IS) in combination with multiple reaction monitoring. Depending on the analyte and the matrix under investigation, calibration curves ranged from 0.14 to 59.8 µg/g (jawbone - ampicillin), 2.0-1000 µg/mL (plasma - ampicillin), and 1.0-495 µg/mL (PRF - ampicillin). All analytes fulfilled the requirements of the guideline regarding sensitivity, linearity, selectivity, carryover, within-run and between run accuracy and precision, matrix effect and extraction recovery in all matrices. The method was successfully applied to measure concentrations of ampicillin, sulbactam and clindamycin in real-life samples obtained in routine clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI