Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data

计算机科学 均方误差 机器学习 人工智能 监督学习 健康状况 半监督学习 标记数据 数据挖掘 估计 模式识别(心理学) 电池(电) 人工神经网络 数学 统计 工程类 功率(物理) 物理 量子力学 系统工程
作者
Chuanping Lin,Jun Xu,Xuesong Mei
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:54: 85-97 被引量:56
标识
DOI:10.1016/j.ensm.2022.10.030
摘要

The state-of-health (SOH) estimation is an important and open issue in battery health management. Most existing data driven SOH estimation methods are based on supervised learning algorithms, relying on large and precious labeled data. However, unlabeled charging data are abundant and readily available, but are rarely used to estimate SOH. To solve these problems, a semi-supervised learning (SSL) based SOH estimation approach is proposed in this paper. By exploiting unlabeled data, the proposed SSL based method can effectively alleviate the labeled data scarcity. Specifically, two regressors are used to learn the mapping between health indicators (HIs) and SOH. The pseudo-labels are predicted for unlabeled data based on semi-supervised co-training to augment the training samples. The final prediction is realized by combining two regressors. Analysis and experiments show that the proposed SSL based method can significantly improve the SOH estimation performance. Using labeled data of only one cell, the average root-mean-square error (RMSE) of SOH estimation for the other seven cells is 0.55%. Compared to two benchmarks without using unlabeled data, the average prediction accuracy is improved by 53% and 26%, respectively. The proposed SSL method is encouraging to surpass a state-of-the-art supervised learning based SOH estimation method. Moreover, physical interpretations for the selected three short-time HIs are provided. This work highlights the promise of combining large-volume unlabeled industrial data with limited labeled laboratory data to estimate the battery SOH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangg发布了新的文献求助10
刚刚
大个应助勤恳的依丝采纳,获得10
1秒前
星星发布了新的文献求助10
1秒前
spray发布了新的文献求助30
1秒前
LZJ完成签到,获得积分10
1秒前
2秒前
YE发布了新的文献求助30
2秒前
MHB应助叫滚滚采纳,获得10
3秒前
wzxxxx发布了新的文献求助10
3秒前
斯文败类应助勤劳傲晴采纳,获得10
4秒前
shilong.yang发布了新的文献求助10
4秒前
momo完成签到,获得积分10
5秒前
wxp_bioinfo完成签到,获得积分10
6秒前
6秒前
桐桐应助wangg采纳,获得10
6秒前
Jun完成签到,获得积分10
7秒前
芝士的酒发布了新的文献求助50
7秒前
8秒前
赘婿应助复杂的问玉采纳,获得30
8秒前
9秒前
9秒前
10秒前
端庄白开水完成签到,获得积分10
10秒前
吕春雨发布了新的文献求助10
10秒前
大个应助wxp_bioinfo采纳,获得10
11秒前
yqq完成签到 ,获得积分10
11秒前
12秒前
13秒前
芝士发布了新的文献求助10
13秒前
橘子发布了新的文献求助10
14秒前
14秒前
14秒前
晨曦发布了新的文献求助10
15秒前
15秒前
kobiy完成签到 ,获得积分10
15秒前
wu完成签到 ,获得积分10
16秒前
蛋泥完成签到,获得积分10
16秒前
顾矜应助mingjie采纳,获得10
17秒前
zhaowenxian发布了新的文献求助10
17秒前
勤劳傲晴发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808