Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data

计算机科学 机器学习 人工智能 监督学习 半监督学习 训练集 标记数据 数据挖掘 无监督学习 估计 电池容量 模式识别(心理学) 估计理论 数据建模 工作(物理) 实验数据 均方预测误差 电池(电)
作者
Chuanping Lin,Jun Xu,Xuesong Mei
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:54: 85-97 被引量:93
标识
DOI:10.1016/j.ensm.2022.10.030
摘要

The state-of-health (SOH) estimation is an important and open issue in battery health management. Most existing data driven SOH estimation methods are based on supervised learning algorithms, relying on large and precious labeled data. However, unlabeled charging data are abundant and readily available, but are rarely used to estimate SOH. To solve these problems, a semi-supervised learning (SSL) based SOH estimation approach is proposed in this paper. By exploiting unlabeled data, the proposed SSL based method can effectively alleviate the labeled data scarcity. Specifically, two regressors are used to learn the mapping between health indicators (HIs) and SOH. The pseudo-labels are predicted for unlabeled data based on semi-supervised co-training to augment the training samples. The final prediction is realized by combining two regressors. Analysis and experiments show that the proposed SSL based method can significantly improve the SOH estimation performance. Using labeled data of only one cell, the average root-mean-square error (RMSE) of SOH estimation for the other seven cells is 0.55%. Compared to two benchmarks without using unlabeled data, the average prediction accuracy is improved by 53% and 26%, respectively. The proposed SSL method is encouraging to surpass a state-of-the-art supervised learning based SOH estimation method. Moreover, physical interpretations for the selected three short-time HIs are provided. This work highlights the promise of combining large-volume unlabeled industrial data with limited labeled laboratory data to estimate the battery SOH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaogm完成签到,获得积分10
刚刚
Hello应助红红采纳,获得10
1秒前
jhd发布了新的文献求助10
1秒前
斯文败类应助chigga采纳,获得10
1秒前
666发布了新的文献求助10
1秒前
hahaha完成签到,获得积分10
2秒前
癫狂梦醒完成签到,获得积分10
3秒前
心猿意马完成签到,获得积分10
3秒前
忧伤的皮埃罗完成签到,获得积分20
3秒前
研酒生完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
zhonglv7应助科研通管家采纳,获得10
4秒前
4秒前
灵舒完成签到,获得积分10
4秒前
扬帆远航应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
Deq完成签到,获得积分10
5秒前
eno完成签到,获得积分10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
1111应助科研通管家采纳,获得10
6秒前
于是完成签到 ,获得积分10
6秒前
实验顺利应助Gavin采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
yhy完成签到,获得积分10
6秒前
6秒前
7秒前
1111应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
鲤鱼白玉完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027