A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles

一般化 电池(电) 计算机科学 人工神经网络 人工智能 卷积神经网络 预处理器 锂离子电池 深度学习 集合(抽象数据类型) 数据集 可靠性工程 工程类 数学 物理 数学分析 功率(物理) 量子力学 程序设计语言
作者
Dinghong Chen,Weige Zhang,Caiping Zhang,Bingxiang Sun,Xinwei Cong,Shaoyuan Wei,Jiuchun Jiang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:327: 120114-120114 被引量:39
标识
DOI:10.1016/j.apenergy.2022.120114
摘要

Life prediction of lithium-ion batteries is vital for battery system utilization and maintenance. Especially, the accurate life prediction in early cycles can accelerate the battery design, production, and optimization. However, diverse aging mechanisms, various cycle profiles, and negligible capacity degradation in the early cycling stages pose significant challenges. This paper proposes a novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles, where the battery lifetime model is formulated by a two-dimensional and one-dimensional parallel hybrid neural network. Firstly, the input data is constructed by a five-step streamlined preprocessing approach. Secondly, two-dimensional and one-dimensional convolutional neural networks are respectively used to extract the underlying associations between the data. Then, the long short-term memory network is employed to learn the time-sequential relationships among the extracted features. Ultimately, the diagnosis for the current cycle life and the prognostic on the remaining useful life of the battery are performed. A well-known dataset is utilized to validate the accuracy and generalization performance of the proposed method. Comparison results with other methods show that the proposed model has strong generalization capability. For the test set composed of data from 31 cells under 25 different cycle profiles, its mean absolute percentage error in early lifetime prediction and remaining useful life prediction is merely 1.47% and 2.85%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder给云飞扬的求助进行了留言
刚刚
缥莲发布了新的文献求助10
1秒前
叶白山完成签到,获得积分10
1秒前
2秒前
2秒前
神勇雨双完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
独角Jing完成签到,获得积分10
4秒前
4秒前
蒋溶发布了新的文献求助10
4秒前
Shaco发布了新的文献求助10
4秒前
4秒前
睿智的Frankie完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
难过惜灵发布了新的文献求助10
7秒前
有长进发布了新的文献求助10
7秒前
大福发布了新的文献求助10
8秒前
8秒前
8秒前
易哒哒发布了新的文献求助10
8秒前
8秒前
9秒前
予陆与你完成签到,获得积分10
9秒前
9秒前
9秒前
天娟完成签到,获得积分10
10秒前
10秒前
李怼怼完成签到,获得积分10
10秒前
10秒前
luanzhaohui完成签到,获得积分10
11秒前
许起眸发布了新的文献求助10
12秒前
Jasper应助阿杰采纳,获得10
12秒前
wkjfh应助大吴克采纳,获得10
12秒前
失眠的血茗完成签到,获得积分10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400