亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A systematic and critical review on development of machine learning based-ensemble models for prediction of adsorption process efficiency

集成学习 过程(计算) 计算机科学 吸附 机器学习 集合预报 人工智能 化学 操作系统 有机化学
作者
Elahe Abbasi,Mohammad Reza Alavi Moghaddam,Elaheh Kowsari
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:379: 134588-134588 被引量:23
标识
DOI:10.1016/j.jclepro.2022.134588
摘要

The development of machine learning-based ensemble models for the prediction of complex processes with non-linear nature (such as adsorption) has been remarkably advanced over recent years. As a result, having an informative vision of these models' progression, appears to be critical for better understanding and using them in applications such as adsorption modeling. This paper systematically and critically reviews 38 articles in the field of application of ensemble models for the prediction of adsorption process efficiency for pollutants' removal from aquatic solutions. Two aspects, including the adsorption process and ensemble models’ characteristics, are discussed in details. The type of adsorbate and adsorbent, as well as the system operation mode, are explored from the first point of view. The type of ensemble technique, software, input and output variables, dataset size and partitioning method, and performance metrics are all investigated in the ensemble model section. Based on discussed aspects and outcomes acquired from reviewed papers, some future research perspectives, including choosing model input variables from adsorbate properties, adsorbent characteristics, and adsorption condition parameters to increase the reliability of model predictions and also increasing dataset size to augment the accuracy of the ensemble models, are recommended for promoting next investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助容若采纳,获得10
2秒前
活力的妙菡完成签到,获得积分20
3秒前
29秒前
舒服的觅云完成签到,获得积分10
31秒前
苏震坤发布了新的文献求助10
33秒前
计划完成签到,获得积分10
51秒前
53秒前
葛力完成签到,获得积分20
57秒前
葛力发布了新的文献求助10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助葛力采纳,获得10
2分钟前
老迟到的梦旋完成签到 ,获得积分10
2分钟前
一只小锦鲤完成签到 ,获得积分10
2分钟前
Licyan完成签到,获得积分10
2分钟前
2分钟前
2分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
3分钟前
上官若男应助爱听歌笑寒采纳,获得10
3分钟前
jimmy_bytheway完成签到,获得积分0
3分钟前
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
重庆森林发布了新的文献求助10
3分钟前
容若发布了新的文献求助10
3分钟前
重庆森林完成签到,获得积分20
3分钟前
jinyue完成签到 ,获得积分10
4分钟前
huxuehong完成签到 ,获得积分10
4分钟前
三金发布了新的文献求助200
4分钟前
4分钟前
怕孤独的白凡完成签到 ,获得积分10
4分钟前
JamesPei应助爱听歌笑寒采纳,获得10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127