A systematic and critical review on development of machine learning based-ensemble models for prediction of adsorption process efficiency

集成学习 过程(计算) 计算机科学 吸附 机器学习 集合预报 人工智能 化学 操作系统 有机化学
作者
Elahe Abbasi,Mohammad Reza Alavi Moghaddam,Elaheh Kowsari
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:379: 134588-134588 被引量:23
标识
DOI:10.1016/j.jclepro.2022.134588
摘要

The development of machine learning-based ensemble models for the prediction of complex processes with non-linear nature (such as adsorption) has been remarkably advanced over recent years. As a result, having an informative vision of these models' progression, appears to be critical for better understanding and using them in applications such as adsorption modeling. This paper systematically and critically reviews 38 articles in the field of application of ensemble models for the prediction of adsorption process efficiency for pollutants' removal from aquatic solutions. Two aspects, including the adsorption process and ensemble models’ characteristics, are discussed in details. The type of adsorbate and adsorbent, as well as the system operation mode, are explored from the first point of view. The type of ensemble technique, software, input and output variables, dataset size and partitioning method, and performance metrics are all investigated in the ensemble model section. Based on discussed aspects and outcomes acquired from reviewed papers, some future research perspectives, including choosing model input variables from adsorbate properties, adsorbent characteristics, and adsorption condition parameters to increase the reliability of model predictions and also increasing dataset size to augment the accuracy of the ensemble models, are recommended for promoting next investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易念完成签到,获得积分10
刚刚
英俊的铭应助刘先生采纳,获得10
刚刚
1秒前
Sunmmon完成签到,获得积分10
2秒前
2秒前
3秒前
善学以致用应助黑冰A采纳,获得10
6秒前
balko完成签到,获得积分10
7秒前
肉肉完成签到,获得积分20
8秒前
阳光青文发布了新的文献求助10
9秒前
9秒前
yx_cheng应助灯与鬼采纳,获得10
10秒前
FashionBoy应助hoshi采纳,获得10
12秒前
longer完成签到 ,获得积分10
12秒前
积极的夜香完成签到,获得积分10
13秒前
14秒前
玩命的鱼发布了新的文献求助10
15秒前
16秒前
17秒前
勤恳立轩完成签到 ,获得积分10
17秒前
Akim应助NoMigraine采纳,获得10
18秒前
刘先生发布了新的文献求助10
19秒前
19秒前
gengxw发布了新的文献求助30
19秒前
灰灰喵完成签到 ,获得积分10
20秒前
20秒前
21秒前
deer完成签到,获得积分10
21秒前
华清引完成签到,获得积分10
21秒前
小白发布了新的文献求助10
22秒前
执玉完成签到,获得积分20
22秒前
从容小蘑菇完成签到,获得积分10
23秒前
小星星发布了新的文献求助50
24秒前
zhai发布了新的文献求助10
25秒前
magiczhu完成签到,获得积分10
26秒前
27秒前
常琳琳完成签到,获得积分10
27秒前
siqi发布了新的文献求助10
28秒前
30秒前
CodeCraft应助qdd采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498