A systematic and critical review on development of machine learning based-ensemble models for prediction of adsorption process efficiency

集成学习 过程(计算) 计算机科学 吸附 机器学习 集合预报 人工智能 化学 操作系统 有机化学
作者
Elahe Abbasi,Mohammad Reza Alavi Moghaddam,Elaheh Kowsari
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:379: 134588-134588 被引量:23
标识
DOI:10.1016/j.jclepro.2022.134588
摘要

The development of machine learning-based ensemble models for the prediction of complex processes with non-linear nature (such as adsorption) has been remarkably advanced over recent years. As a result, having an informative vision of these models' progression, appears to be critical for better understanding and using them in applications such as adsorption modeling. This paper systematically and critically reviews 38 articles in the field of application of ensemble models for the prediction of adsorption process efficiency for pollutants' removal from aquatic solutions. Two aspects, including the adsorption process and ensemble models’ characteristics, are discussed in details. The type of adsorbate and adsorbent, as well as the system operation mode, are explored from the first point of view. The type of ensemble technique, software, input and output variables, dataset size and partitioning method, and performance metrics are all investigated in the ensemble model section. Based on discussed aspects and outcomes acquired from reviewed papers, some future research perspectives, including choosing model input variables from adsorbate properties, adsorbent characteristics, and adsorption condition parameters to increase the reliability of model predictions and also increasing dataset size to augment the accuracy of the ensemble models, are recommended for promoting next investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助1234567采纳,获得10
刚刚
童童发布了新的文献求助10
刚刚
小城旧事应助文件撤销了驳回
1秒前
2秒前
勤劳樱发布了新的文献求助10
2秒前
震动的化蛹完成签到,获得积分10
3秒前
4秒前
霡霂发布了新的文献求助50
4秒前
6秒前
ding应助柚子街采纳,获得10
6秒前
277发布了新的文献求助10
9秒前
9秒前
养猪大户完成签到 ,获得积分10
9秒前
9秒前
hpc完成签到,获得积分10
11秒前
小星星发布了新的文献求助10
11秒前
内向水风完成签到,获得积分10
12秒前
12秒前
15秒前
16秒前
飞快的盈完成签到,获得积分10
16秒前
17秒前
爆米花应助义气凡霜采纳,获得10
17秒前
VDC应助小星星采纳,获得30
18秒前
大个应助qiukui采纳,获得10
18秒前
22秒前
王麒发布了新的文献求助10
22秒前
Elaine完成签到,获得积分10
25秒前
鲁丁丁完成签到 ,获得积分10
26秒前
ccf完成签到 ,获得积分10
26秒前
27秒前
小星星完成签到,获得积分10
27秒前
内向水风发布了新的文献求助10
27秒前
27秒前
29秒前
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
大个应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373683
求助须知:如何正确求助?哪些是违规求助? 4499724
关于积分的说明 14007089
捐赠科研通 4406596
什么是DOI,文献DOI怎么找? 2420552
邀请新用户注册赠送积分活动 1413357
关于科研通互助平台的介绍 1389902