Investigating the relationship of co-exposure to multiple metals with chronic kidney disease: An integrated perspective from epidemiology and adverse outcome pathways

不良结局途径 透视图(图形) 毒性 结果(博弈论) 流行病学 不利影响 医学 环境卫生 毒理 药理学 内科学 生物 计算生物学 计算机科学 数学 数理经济学 人工智能
作者
Yican Wang,Mengyun Qiao,Haitao Yang,Yuanyuan Chen,Bo Jiao,Shuai Liu,Airu Duan,Siyu Wu,Haihua Wang,Changyan Yu,Xiao Chen,Huawei Duan,Yufei Dai,Bin Li
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:480: 135844-135844 被引量:9
标识
DOI:10.1016/j.jhazmat.2024.135844
摘要

Systematic studies on the associations between co-exposure to multiple metals and chronic kidney disease (CKD), as well as the underlying mechanisms, remain insufficient. This study aimed to provide a comprehensive perspective on the risk of CKD induced by multiple metal co-exposures through the integration of occupational epidemiology and adverse outcome pathway (AOP). The study participants included 401 male mine workers whose blood metal, β2-microglobulin (β2-MG), and cystatin C (Cys-C) levels were measured. Generalized linear models (GLMs), quantile g-computation models (qgcomp), least absolute shrinkage and selection operator (LASSO), and bayesian kernel machine regression (BKMR) were utilized to identify critical nephrotoxic metals. The mean concentrations of lead, cadmium, mercury, arsenic, and manganese were 191.93, 3.92, 4.66, 3.11, 11.35, and 16.33 µg/L, respectively. GLM, LASSO, qgcomp, and BKMR models consistently identified lead, cadmium, mercury, and arsenic as the primary contributors to kidney toxicity. Based on our epidemiological analysis, we used a computational toxicology method to construct a chemical-genetic-phenotype-disease network (CGPDN) from the Comparative Toxicogenomics Database (CTD), DisGeNET, and GeneCard databases, and further linked key events (KEs) related to kidney toxicity from the AOP-Wiki and PubMed databases. Finally, an AOP framework of multiple metals was constructed by integrating the common molecular initiating events (reactive oxygen species) and KEs (MAPK signaling pathway, oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, hypertension, cell death, and kidney toxicity). This is the first AOP network to elucidate the internal association between multiple metal co-exposures and CKD, providing a crucial basis for the risk assessment of multiple metal co-exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助nqterysc采纳,获得10
1秒前
BaooooooMao完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
浩气长存完成签到 ,获得积分10
2秒前
arsenal完成签到 ,获得积分10
2秒前
儒雅黑裤完成签到,获得积分10
3秒前
勤奋雨完成签到,获得积分10
4秒前
辛勤谷雪完成签到,获得积分0
4秒前
mumuaidafu完成签到 ,获得积分10
4秒前
《子非鱼》完成签到,获得积分10
5秒前
花白年华哈哈哈完成签到,获得积分10
6秒前
李大王完成签到 ,获得积分10
6秒前
ludong_0完成签到,获得积分10
7秒前
8秒前
辛勤如柏完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
Ava应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
大仙完成签到,获得积分10
12秒前
fang完成签到,获得积分10
14秒前
喜凉的采枫完成签到 ,获得积分10
14秒前
钱塘郎中完成签到,获得积分0
15秒前
凶狠的土豆丝完成签到 ,获得积分10
15秒前
日照金峰完成签到,获得积分10
16秒前
LD完成签到 ,获得积分10
16秒前
16秒前
NexusExplorer应助Maestro_S采纳,获得10
17秒前
18秒前
科研通AI6.1应助马成双采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
绵绵完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
wjw发布了新的文献求助10
19秒前
lh完成签到 ,获得积分10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900