Investigating the relationship of co-exposure to multiple metals with chronic kidney disease: An integrated perspective from epidemiology and adverse outcome pathways

不良结局途径 透视图(图形) 毒性 结果(博弈论) 流行病学 不利影响 医学 环境卫生 毒理 药理学 内科学 生物 计算生物学 计算机科学 数学 数理经济学 人工智能
作者
Yican Wang,Mengyun Qiao,Haitao Yang,Yuanyuan Chen,Bo Jiao,Shuai Liu,Airu Duan,Siyu Wu,Haihua Wang,Changyan Yu,Xiao Chen,Huawei Duan,Yufei Dai,Bin Li
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:480: 135844-135844 被引量:9
标识
DOI:10.1016/j.jhazmat.2024.135844
摘要

Systematic studies on the associations between co-exposure to multiple metals and chronic kidney disease (CKD), as well as the underlying mechanisms, remain insufficient. This study aimed to provide a comprehensive perspective on the risk of CKD induced by multiple metal co-exposures through the integration of occupational epidemiology and adverse outcome pathway (AOP). The study participants included 401 male mine workers whose blood metal, β2-microglobulin (β2-MG), and cystatin C (Cys-C) levels were measured. Generalized linear models (GLMs), quantile g-computation models (qgcomp), least absolute shrinkage and selection operator (LASSO), and bayesian kernel machine regression (BKMR) were utilized to identify critical nephrotoxic metals. The mean concentrations of lead, cadmium, mercury, arsenic, and manganese were 191.93, 3.92, 4.66, 3.11, 11.35, and 16.33 µg/L, respectively. GLM, LASSO, qgcomp, and BKMR models consistently identified lead, cadmium, mercury, and arsenic as the primary contributors to kidney toxicity. Based on our epidemiological analysis, we used a computational toxicology method to construct a chemical-genetic-phenotype-disease network (CGPDN) from the Comparative Toxicogenomics Database (CTD), DisGeNET, and GeneCard databases, and further linked key events (KEs) related to kidney toxicity from the AOP-Wiki and PubMed databases. Finally, an AOP framework of multiple metals was constructed by integrating the common molecular initiating events (reactive oxygen species) and KEs (MAPK signaling pathway, oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, hypertension, cell death, and kidney toxicity). This is the first AOP network to elucidate the internal association between multiple metal co-exposures and CKD, providing a crucial basis for the risk assessment of multiple metal co-exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助蔡徐坤采纳,获得10
刚刚
1秒前
1秒前
lukescholar发布了新的文献求助10
1秒前
燕小丙完成签到,获得积分10
1秒前
1秒前
玲℃完成签到,获得积分10
1秒前
香蕉觅云应助大111采纳,获得10
1秒前
乐乐应助玛瑙采纳,获得10
1秒前
3秒前
3秒前
天空之城发布了新的文献求助10
3秒前
wanci应助王一博采纳,获得10
3秒前
4秒前
4秒前
哈哈哈哈完成签到,获得积分10
5秒前
诗恋菲宇完成签到,获得积分10
5秒前
6秒前
6秒前
xcl完成签到,获得积分10
6秒前
Z126发布了新的文献求助30
6秒前
6秒前
Jasper应助lulu采纳,获得30
7秒前
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
June发布了新的文献求助30
8秒前
CodeCraft应助晓世采纳,获得10
8秒前
可乐加冰发布了新的文献求助10
8秒前
ZBQ发布了新的文献求助10
9秒前
9秒前
科研通AI6应助new采纳,获得80
10秒前
Gracebing发布了新的文献求助10
10秒前
calm发布了新的文献求助10
10秒前
TTTTT完成签到,获得积分10
10秒前
靖雁完成签到,获得积分10
10秒前
xxxx完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082