亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites

变构调节 配体(生物化学) 化学 计算生物学 计算机科学 受体 生物 生物化学
作者
Gustav Olanders,Giulia Testa,Alessandro Tibo,Eva Nittinger,Christian Tyrchan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01475
摘要

In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallography and cryo-electron microscopy have been used to unravel these structures, but they are often challenging, time-consuming and costly. Recently, a breakthrough in computational biology has emerged with the development of deep learning algorithms capable of predicting protein structures based on their amino acid sequences (Jumper, J., et al. Nature 2021, 596, 583. Lane, T. J. Nature Methods 2023, 20, 170. Kryshtafovych, A., et al. Proteins: Structure, Function and Bioinformatics 2021, 89, 1607). This study focuses on predicting the dynamic changes that proteins undergo upon ligand binding, specifically when they bind to allosteric sites, i.e. a pocket different from the active site. Allosteric modulators are particularly important for drug discovery, as they open new avenues for designing drugs that can target proteins more effectively and with fewer side effects (Nussinov, R.; Tsai, C. J. Cell 2013, 153, 293). To study this, we curated a data set of 578 X-ray structures comprised of proteins displaying orthosteric and allosteric binding as well as a general framework to evaluate deep learning-based structure prediction methods. Our findings demonstrate the potential and current limitations of deep learning methods, such as AlphaFold2 (Jumper, J., et al. Nature 2021, 596, 583), NeuralPLexer (Qiao, Z., et al. Nat Mach Intell 2024, 6, 195), and RoseTTAFold All-Atom (Krishna, R., et al. Science 2024, 384, eadl2528) to predict not just static protein structures but also the dynamic conformational changes. Herein we show that predicting the allosteric induce-fit conformation still poses a challenge to deep learning methods as they more accurately predict the orthosteric bound conformation compared to the allosteric induce fit conformation. For AlphaFold2, we observed that conformational diversity, and sampling between the apo and holo state could be increased by modifying the MSA depth, but this did not enhance the ability to generate conformations close to the allosteric induced-fit conformation. To further support advancements in protein structure prediction field, the curated data set and evaluation framework are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fantw完成签到 ,获得积分20
2秒前
7秒前
斯文败类应助从容的盼晴采纳,获得10
28秒前
深情安青应助容若采纳,获得10
1分钟前
Tinlie发布了新的文献求助10
1分钟前
Z小姐完成签到 ,获得积分10
1分钟前
kuoping完成签到,获得积分10
1分钟前
花开发布了新的文献求助10
1分钟前
香蕉觅云应助花开采纳,获得10
2分钟前
我是老大应助拟好采纳,获得10
2分钟前
caohuijun发布了新的文献求助10
2分钟前
Tinlie完成签到,获得积分20
3分钟前
3分钟前
拟好发布了新的文献求助10
3分钟前
寻道图强应助拟好采纳,获得30
4分钟前
4分钟前
5分钟前
5分钟前
cyb完成签到,获得积分10
5分钟前
iuv完成签到,获得积分10
5分钟前
Lucas应助容若采纳,获得10
6分钟前
6分钟前
中央完成签到,获得积分10
6分钟前
7分钟前
四夕发布了新的文献求助30
7分钟前
小蘑菇应助容若采纳,获得10
7分钟前
从容的盼晴完成签到,获得积分10
7分钟前
中中中完成签到 ,获得积分10
9分钟前
积极的中蓝完成签到 ,获得积分10
9分钟前
Wei发布了新的文献求助10
10分钟前
科研通AI2S应助Wei采纳,获得10
10分钟前
10分钟前
Meimei发布了新的文献求助20
10分钟前
情怀应助陈媛采纳,获得10
12分钟前
12分钟前
Meimei完成签到,获得积分10
12分钟前
陈媛发布了新的文献求助10
12分钟前
爱听歌的大地完成签到 ,获得积分10
13分钟前
荀煜祺完成签到,获得积分10
13分钟前
13分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142692
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806988
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328