Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites

变构调节 配体(生物化学) 化学 计算生物学 计算机科学 受体 生物 生物化学
作者
Gustav Olanders,Giulia Testa,Alessandro Tibo,Eva Nittinger,Christian Tyrchan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (22): 8481-8494
标识
DOI:10.1021/acs.jcim.4c01475
摘要

In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallography and cryo-electron microscopy have been used to unravel these structures, but they are often challenging, time-consuming and costly. Recently, a breakthrough in computational biology has emerged with the development of deep learning algorithms capable of predicting protein structures based on their amino acid sequences (Jumper, J., et al. Nature 2021, 596, 583. Lane, T. J. Nature Methods 2023, 20, 170. Kryshtafovych, A., et al. Proteins: Structure, Function and Bioinformatics 2021, 89, 1607). This study focuses on predicting the dynamic changes that proteins undergo upon ligand binding, specifically when they bind to allosteric sites, i.e. a pocket different from the active site. Allosteric modulators are particularly important for drug discovery, as they open new avenues for designing drugs that can target proteins more effectively and with fewer side effects (Nussinov, R.; Tsai, C. J. Cell 2013, 153, 293). To study this, we curated a data set of 578 X-ray structures comprised of proteins displaying orthosteric and allosteric binding as well as a general framework to evaluate deep learning-based structure prediction methods. Our findings demonstrate the potential and current limitations of deep learning methods, such as AlphaFold2 (Jumper, J., et al. Nature 2021, 596, 583), NeuralPLexer (Qiao, Z., et al. Nat Mach Intell 2024, 6, 195), and RoseTTAFold All-Atom (Krishna, R., et al. Science 2024, 384, eadl2528) to predict not just static protein structures but also the dynamic conformational changes. Herein we show that predicting the allosteric induce-fit conformation still poses a challenge to deep learning methods as they more accurately predict the orthosteric bound conformation compared to the allosteric induce fit conformation. For AlphaFold2, we observed that conformational diversity, and sampling between the apo and holo state could be increased by modifying the MSA depth, but this did not enhance the ability to generate conformations close to the allosteric induced-fit conformation. To further support advancements in protein structure prediction field, the curated data set and evaluation framework are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助ztq417采纳,获得10
1秒前
温乘云发布了新的文献求助10
1秒前
璨澄发布了新的文献求助10
1秒前
1秒前
Li发布了新的文献求助10
2秒前
CARL完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
包容的雅青完成签到,获得积分10
6秒前
温乘云完成签到,获得积分10
7秒前
科研通AI5应助酷酷语兰采纳,获得10
7秒前
沉醉夜色完成签到,获得积分10
8秒前
9秒前
9秒前
希望天下0贩的0应助hao采纳,获得10
9秒前
整齐荟发布了新的文献求助10
10秒前
筱菱完成签到,获得积分10
10秒前
10秒前
酷波er应助好旺采纳,获得10
10秒前
leanne发布了新的文献求助10
10秒前
桐桐应助地表飞猪采纳,获得10
10秒前
12秒前
13秒前
15秒前
15秒前
psycho发布了新的文献求助10
16秒前
lihuahui发布了新的文献求助10
16秒前
17秒前
Lucas应助橙汁采纳,获得10
17秒前
团团发布了新的文献求助10
18秒前
18秒前
上官若男应助整齐荟采纳,获得10
18秒前
yu应助隐形皮卡丘采纳,获得10
20秒前
ED应助隐形皮卡丘采纳,获得30
20秒前
量子星尘发布了新的文献求助10
20秒前
酷酷语兰发布了新的文献求助10
21秒前
博ge发布了新的文献求助10
22秒前
酷波er应助lihuahui采纳,获得10
22秒前
好旺发布了新的文献求助10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980299
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220587
捐赠科研通 3261687
什么是DOI,文献DOI怎么找? 1800886
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807249