清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites

变构调节 配体(生物化学) 化学 计算生物学 计算机科学 受体 生物 生物化学
作者
Gustav Olanders,Giulia Testa,Alessandro Tibo,Eva Nittinger,Christian Tyrchan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (22): 8481-8494 被引量:9
标识
DOI:10.1021/acs.jcim.4c01475
摘要

In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallography and cryo-electron microscopy have been used to unravel these structures, but they are often challenging, time-consuming and costly. Recently, a breakthrough in computational biology has emerged with the development of deep learning algorithms capable of predicting protein structures based on their amino acid sequences (Jumper, J., et al. Nature 2021, 596, 583. Lane, T. J. Nature Methods 2023, 20, 170. Kryshtafovych, A., et al. Proteins: Structure, Function and Bioinformatics 2021, 89, 1607). This study focuses on predicting the dynamic changes that proteins undergo upon ligand binding, specifically when they bind to allosteric sites, i.e. a pocket different from the active site. Allosteric modulators are particularly important for drug discovery, as they open new avenues for designing drugs that can target proteins more effectively and with fewer side effects (Nussinov, R.; Tsai, C. J. Cell 2013, 153, 293). To study this, we curated a data set of 578 X-ray structures comprised of proteins displaying orthosteric and allosteric binding as well as a general framework to evaluate deep learning-based structure prediction methods. Our findings demonstrate the potential and current limitations of deep learning methods, such as AlphaFold2 (Jumper, J., et al. Nature 2021, 596, 583), NeuralPLexer (Qiao, Z., et al. Nat Mach Intell 2024, 6, 195), and RoseTTAFold All-Atom (Krishna, R., et al. Science 2024, 384, eadl2528) to predict not just static protein structures but also the dynamic conformational changes. Herein we show that predicting the allosteric induce-fit conformation still poses a challenge to deep learning methods as they more accurately predict the orthosteric bound conformation compared to the allosteric induce fit conformation. For AlphaFold2, we observed that conformational diversity, and sampling between the apo and holo state could be increased by modifying the MSA depth, but this did not enhance the ability to generate conformations close to the allosteric induced-fit conformation. To further support advancements in protein structure prediction field, the curated data set and evaluation framework are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助七安得安采纳,获得10
6秒前
19秒前
七安得安发布了新的文献求助10
24秒前
yipmyonphu完成签到,获得积分10
27秒前
Benhnhk21完成签到,获得积分10
39秒前
蔓越莓麻薯完成签到 ,获得积分10
40秒前
Vintoe完成签到 ,获得积分10
47秒前
linkman发布了新的文献求助10
1分钟前
1分钟前
linkman发布了新的文献求助10
1分钟前
1分钟前
jjj完成签到,获得积分10
1分钟前
yiyixt完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分0
2分钟前
原子超人完成签到,获得积分10
2分钟前
hehe完成签到,获得积分10
2分钟前
Jasper应助joysa采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
3分钟前
HZ发布了新的文献求助10
3分钟前
3分钟前
叶千山完成签到 ,获得积分10
3分钟前
joysa发布了新的文献求助10
3分钟前
HZ完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
5分钟前
Criminology34应助阿泽采纳,获得10
5分钟前
QQWRV发布了新的文献求助30
5分钟前
ZaZa完成签到,获得积分10
5分钟前
5分钟前
pengpengyin发布了新的文献求助10
5分钟前
田様应助pengpengyin采纳,获得10
5分钟前
alanbike完成签到,获得积分10
6分钟前
miaomiao123完成签到 ,获得积分10
6分钟前
青树柠檬完成签到 ,获得积分10
6分钟前
房天川完成签到 ,获得积分10
6分钟前
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644940
求助须知:如何正确求助?哪些是违规求助? 4766456
关于积分的说明 15025933
捐赠科研通 4803292
什么是DOI,文献DOI怎么找? 2568166
邀请新用户注册赠送积分活动 1525618
关于科研通互助平台的介绍 1485156