清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites

变构调节 配体(生物化学) 化学 计算生物学 计算机科学 受体 生物 生物化学
作者
Gustav Olanders,Giulia Testa,Alessandro Tibo,Eva Nittinger,Christian Tyrchan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01475
摘要

In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallography and cryo-electron microscopy have been used to unravel these structures, but they are often challenging, time-consuming and costly. Recently, a breakthrough in computational biology has emerged with the development of deep learning algorithms capable of predicting protein structures based on their amino acid sequences (Jumper, J., et al. Nature 2021, 596, 583. Lane, T. J. Nature Methods 2023, 20, 170. Kryshtafovych, A., et al. Proteins: Structure, Function and Bioinformatics 2021, 89, 1607). This study focuses on predicting the dynamic changes that proteins undergo upon ligand binding, specifically when they bind to allosteric sites, i.e. a pocket different from the active site. Allosteric modulators are particularly important for drug discovery, as they open new avenues for designing drugs that can target proteins more effectively and with fewer side effects (Nussinov, R.; Tsai, C. J. Cell 2013, 153, 293). To study this, we curated a data set of 578 X-ray structures comprised of proteins displaying orthosteric and allosteric binding as well as a general framework to evaluate deep learning-based structure prediction methods. Our findings demonstrate the potential and current limitations of deep learning methods, such as AlphaFold2 (Jumper, J., et al. Nature 2021, 596, 583), NeuralPLexer (Qiao, Z., et al. Nat Mach Intell 2024, 6, 195), and RoseTTAFold All-Atom (Krishna, R., et al. Science 2024, 384, eadl2528) to predict not just static protein structures but also the dynamic conformational changes. Herein we show that predicting the allosteric induce-fit conformation still poses a challenge to deep learning methods as they more accurately predict the orthosteric bound conformation compared to the allosteric induce fit conformation. For AlphaFold2, we observed that conformational diversity, and sampling between the apo and holo state could be increased by modifying the MSA depth, but this did not enhance the ability to generate conformations close to the allosteric induced-fit conformation. To further support advancements in protein structure prediction field, the curated data set and evaluation framework are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫马白亦完成签到,获得积分10
2秒前
Hiaoliem完成签到 ,获得积分10
2秒前
zhdjj完成签到 ,获得积分10
53秒前
xfcy完成签到,获得积分0
58秒前
紫陌完成签到,获得积分0
1分钟前
修水县1个科研人完成签到 ,获得积分10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
xixi很困完成签到 ,获得积分10
1分钟前
marinemiao完成签到,获得积分10
1分钟前
萧水白应助marinemiao采纳,获得10
1分钟前
mrwang完成签到 ,获得积分10
1分钟前
1分钟前
www发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助利酱采纳,获得10
1分钟前
dajiejie完成签到 ,获得积分10
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
2分钟前
利酱发布了新的文献求助10
2分钟前
franca2005完成签到 ,获得积分10
2分钟前
www完成签到,获得积分10
3分钟前
雪妮完成签到 ,获得积分10
3分钟前
migi完成签到,获得积分10
3分钟前
张大星完成签到 ,获得积分10
3分钟前
liuzhifenshen完成签到,获得积分10
3分钟前
elisa828完成签到,获得积分10
3分钟前
Jack80发布了新的文献求助50
3分钟前
huiluowork完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
fff发布了新的文献求助10
4分钟前
loga80完成签到,获得积分10
4分钟前
二牛完成签到,获得积分10
4分钟前
星希完成签到 ,获得积分10
5分钟前
苏州九龙小7完成签到 ,获得积分10
5分钟前
芝麻完成签到,获得积分10
5分钟前
xinjiasuki完成签到 ,获得积分10
5分钟前
huangzsdy完成签到,获得积分10
5分钟前
清秀LL完成签到 ,获得积分10
5分钟前
小白完成签到 ,获得积分10
6分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068193
求助须知:如何正确求助?哪些是违规求助? 2722162
关于积分的说明 7476072
捐赠科研通 2369138
什么是DOI,文献DOI怎么找? 1256228
科研通“疑难数据库(出版商)”最低求助积分说明 609518
版权声明 596835