Breaking the size limitation of nonadiabatic molecular dynamics in condensed matter systems with local descriptor machine learning

动力学(音乐) 统计物理学 化学物理 分子动力学 活性物质 物理 计算机科学 经典力学 量子力学 生物 声学 细胞生物学
作者
Dongyu Liu,Bipeng Wang,Yifan Wu,Andrey S. Vasenko,Oleg V. Prezhdo
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (36) 被引量:8
标识
DOI:10.1073/pnas.2403497121
摘要

Nonadiabatic molecular dynamics (NA-MD) is a powerful tool to model far-from-equilibrium processes, such as photochemical reactions and charge transport. NA-MD application to condensed phase has drawn tremendous attention recently for development of next-generation energy and optoelectronic materials. Studies of condensed matter allow one to employ efficient computational tools, such as density functional theory (DFT) and classical path approximation (CPA). Still, system size and simulation timescale are strongly limited by costly ab initio calculations of electronic energies, forces, and NA couplings. We resolve the limitations by developing a fully machine learning (ML) approach in which all the above properties are obtained using neural networks based on local descriptors. The ML models correlate the target properties for NA-MD, implemented with DFT and CPA, directly to the system structure. Trained on small systems, the neural networks are applied to large systems and long timescales, extending NA-MD capabilities by orders of magnitude. We demonstrate the approach with dependence of charge trapping and recombination on defect concentration in MoS 2 . Defects provide the main mechanism of charge losses, resulting in performance degradation. Charge trapping slows with decreasing defect concentration; however, recombination exhibits complex dependence, conditional on whether it occurs between free or trapped charges, and relative concentrations of carriers and defects. Delocalized shallow traps can become localized with increasing temperature, changing trapping and recombination behavior. Completely based on ML, the approach bridges the gap between theoretical models and realistic experimental conditions and enables NA-MD on thousand-atom systems and many nanoseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯的手机完成签到,获得积分10
刚刚
SciGPT应助huihuila采纳,获得10
1秒前
打打应助Sober采纳,获得10
1秒前
安详宛筠完成签到,获得积分10
1秒前
充电宝应助young采纳,获得10
2秒前
袁野完成签到,获得积分10
3秒前
lihongchi完成签到,获得积分10
4秒前
佐小叶发布了新的文献求助10
5秒前
jjjjjjjj完成签到,获得积分10
5秒前
英姑应助蹦蹦采纳,获得10
6秒前
奇博士完成签到,获得积分10
6秒前
cocolu应助LIUDAN采纳,获得10
6秒前
10秒前
12秒前
12秒前
13秒前
一颗馒头完成签到,获得积分10
13秒前
15秒前
Sober发布了新的文献求助10
15秒前
小啦啦3082发布了新的文献求助10
15秒前
16秒前
含蓄问安发布了新的文献求助10
16秒前
林夕完成签到,获得积分10
20秒前
20秒前
调研昵称发布了新的文献求助10
22秒前
希望天下0贩的0应助TIGun采纳,获得10
22秒前
24秒前
nature发布了新的文献求助10
25秒前
阿灿完成签到,获得积分20
26秒前
26秒前
科目三应助咩咩采纳,获得10
26秒前
落寞丹萱发布了新的文献求助10
27秒前
调研昵称发布了新的文献求助10
29秒前
Lucas应助海海采纳,获得10
29秒前
Nerissa完成签到,获得积分10
30秒前
火星上友易完成签到,获得积分10
30秒前
英俊的铭应助佐小叶采纳,获得10
30秒前
着急的斩发布了新的文献求助10
31秒前
困困困完成签到,获得积分10
32秒前
满意芯完成签到,获得积分20
32秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433815
求助须知:如何正确求助?哪些是违规求助? 3030979
关于积分的说明 8940427
捐赠科研通 2719043
什么是DOI,文献DOI怎么找? 1491619
科研通“疑难数据库(出版商)”最低求助积分说明 689331
邀请新用户注册赠送积分活动 685455