Quantifying spatial interaction centrality in urban population mobility: a mobility feature- and network topology-based locational measure

中心性 度量(数据仓库) 特征(语言学) 拓扑(电路) 人口 经济地理学 计算机科学 网络拓扑 地理 数据挖掘 数学 计算机网络 统计 社会学 人口学 组合数学 哲学 语言学
作者
Jing Cai,Rui Li,Zhaohui Liu,Xinrui Liu,Huayi Wu
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:114: 105769-105769
标识
DOI:10.1016/j.scs.2024.105769
摘要

Spatial interaction centrality reflects the relative importance of population mobility within a location in urban population mobility. Population mobility networks visually represent urban population mobility, with mobility features and network topology contributing to the quantification of spatial interaction centrality of locations (i.e., geographical nodes). However, existing centrality measures rarely consider mobility features and network topology simultaneously. Centrality quantification also ignores the differences in distance effects between long- and short-distance trips. These factors have led to the inaccurate quantification of centrality. We propose an algorithm called k-dis-weight-shell that quantifies the spatial interaction centrality of geographical nodes at different spatiotemporal scales. Considering the different effects of distance on long- and short-distance trips, we use a spatial continuous wavelet transformation to estimate the radiation radius of geographical nodes. Then, by combining network topology with mobility features (mobility distance and flow), the algorithm transforms them into a ranked order of spatial interaction centrality. Tested in Wuhan and Chengdu, our algorithm outperforms six existing benchmarks. For cases in urban planning and epidemic management, results show that k-dis-weight-shell effectively distinguishes similarities and differences between the distribution of population mobility's spatial interaction centrality and the urban center hierarchy at a coarse spatiotemporal scale. Additionally, it reveals a double wave phenomenon of spatiotemporal correlation between population mobility and COVID-19 transmission before and after lockdown at a fine spatiotemporal scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率的钢铁侠完成签到,获得积分10
1秒前
1秒前
Akim应助Li采纳,获得10
2秒前
科研通AI2S应助0美团外卖0采纳,获得10
2秒前
2秒前
zby2完成签到,获得积分10
2秒前
春春完成签到,获得积分10
3秒前
装满阳光的橘子完成签到,获得积分10
4秒前
pqy关闭了pqy文献求助
4秒前
田様应助犹豫的觅云采纳,获得10
4秒前
dsfgbh发布了新的文献求助10
5秒前
感到蔚蓝完成签到,获得积分10
5秒前
ajun完成签到,获得积分10
5秒前
Snow完成签到 ,获得积分10
5秒前
meiyugao发布了新的文献求助10
6秒前
年小年完成签到,获得积分10
6秒前
自信谷冬完成签到,获得积分10
7秒前
Sallxy完成签到 ,获得积分10
7秒前
8秒前
8秒前
anna1992发布了新的文献求助10
8秒前
POLLY完成签到 ,获得积分10
9秒前
Jasper应助鲸鱼采纳,获得10
9秒前
9秒前
CAIJING完成签到,获得积分10
9秒前
深情安青应助研友_Zbb4mZ采纳,获得10
10秒前
姜汁完成签到,获得积分10
10秒前
666完成签到,获得积分20
10秒前
玖文完成签到,获得积分10
10秒前
10秒前
10秒前
JamesPei应助舒一一采纳,获得10
11秒前
Surface发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
文艺的千亦发布了新的文献求助150
13秒前
QQQQQQ发布了新的文献求助10
13秒前
轻风发布了新的文献求助30
13秒前
Muhammad完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635