已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

YOLO-DroneMS: Multi-Scale Object Detection Network for Unmanned Aerial Vehicle (UAV) Images

计算机视觉 比例(比率) 计算机科学 人工智能 目标检测 对象(语法) 遥感 地理 地图学 模式识别(心理学)
作者
Xueqiang Zhao,Yangbo Chen
出处
期刊:Drones [MDPI AG]
卷期号:8 (11): 609-609 被引量:2
标识
DOI:10.3390/drones8110609
摘要

In recent years, research on Unmanned Aerial Vehicles (UAVs) has developed rapidly. Compared to traditional remote-sensing images, UAV images exhibit complex backgrounds, high resolution, and large differences in object scales. Therefore, UAV object detection is an essential yet challenging task. This paper proposes a multi-scale object detection network, namely YOLO-DroneMS (You Only Look Once for Drone Multi-Scale Object), for UAV images. Targeting the pivotal connection between the backbone and neck, the Large Separable Kernel Attention (LSKA) mechanism is adopted with the Spatial Pyramid Pooling Factor (SPPF), where weighted processing of multi-scale feature maps is performed to focus more on features. And Attentional Scale Sequence Fusion DySample (ASF-DySample) is introduced to perform attention scale sequence fusion and dynamic upsampling to conserve resources. Then, the faster cross-stage partial network bottleneck with two convolutions (named C2f) in the backbone is optimized using the Inverted Residual Mobile Block and Dilated Reparam Block (iRMB-DRB), which balances the advantages of dynamic global modeling and static local information fusion. This optimization effectively increases the model’s receptive field, enhancing its capability for downstream tasks. By replacing the original CIoU with WIoUv3, the model prioritizes anchoring boxes of superior quality, dynamically adjusting weights to enhance detection performance for small objects. Experimental findings on the VisDrone2019 dataset demonstrate that at an Intersection over Union (IoU) of 0.5, YOLO-DroneMS achieves a 3.6% increase in mAP@50 compared to the YOLOv8n model. Moreover, YOLO-DroneMS exhibits improved detection speed, increasing the number of frames per second (FPS) from 78.7 to 83.3. The enhanced model supports diverse target scales and achieves high recognition rates, making it well-suited for drone-based object detection tasks, particularly in scenarios involving multiple object clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chanyi完成签到,获得积分10
刚刚
白华苍松发布了新的文献求助10
刚刚
yhxwqkk发布了新的文献求助10
3秒前
3秒前
han完成签到,获得积分10
4秒前
hiaoyi完成签到 ,获得积分0
6秒前
7秒前
老马哥完成签到 ,获得积分0
7秒前
果砸完成签到 ,获得积分10
8秒前
8秒前
9秒前
严明完成签到,获得积分10
9秒前
wangting发布了新的文献求助10
9秒前
ky小白白完成签到 ,获得积分10
10秒前
12秒前
阿壮完成签到,获得积分10
13秒前
huntme完成签到,获得积分10
13秒前
nk完成签到 ,获得积分10
14秒前
石头完成签到 ,获得积分10
14秒前
啦啦啦啦完成签到,获得积分10
15秒前
15秒前
奋斗机器猫完成签到 ,获得积分10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
17秒前
华仔应助科研通管家采纳,获得10
17秒前
Wmhuahuaood完成签到,获得积分20
18秒前
czy完成签到 ,获得积分10
19秒前
科研小趴菜完成签到,获得积分10
20秒前
酷波er应助胡博士采纳,获得10
20秒前
nanxing发布了新的文献求助10
20秒前
柚子完成签到 ,获得积分10
21秒前
甜蜜的晓啸完成签到,获得积分10
22秒前
小石头完成签到 ,获得积分10
23秒前
24秒前
田様应助啦啦啦啦采纳,获得10
25秒前
25秒前
文艺凉面完成签到 ,获得积分10
25秒前
人文完成签到 ,获得积分10
27秒前
顺利白柏完成签到 ,获得积分10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544311
求助须知:如何正确求助?哪些是违规求助? 3121491
关于积分的说明 9347496
捐赠科研通 2819748
什么是DOI,文献DOI怎么找? 1550401
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265