Customized T-time inner sampling network with uncertainty-aware data augmentation strategy for multi-annotated lesion segmentation

计算机科学 分割 采样(信号处理) 人工智能 病变 数据挖掘 模式识别(心理学) 机器学习 计算机视觉 医学 外科 滤波器(信号处理)
作者
Xi Zhou,Xinxin Wang,Haiqin Ma,J. Zhang,Xiaomei Wang,Xiuxiu Bai,Li Zhang,Jia Long,Jiakuan Chen,Hongbo Le,Wenjie He,Shen Zhao,Jun Xia,Guang Yang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:180: 108990-108990
标识
DOI:10.1016/j.compbiomed.2024.108990
摘要

Segmentation in medical images is inherently ambiguous. It is crucial to capture the uncertainty in lesion segmentations to assist cancer diagnosis and further interventions. Recent works have made great progress in generating multiple plausible segmentation results as diversified references to account for the uncertainty in lesion segmentations. However, the efficiency of existing models is limited, and the uncertainty information lying in multi-annotated datasets remains to be fully utilized. In this study, we propose a series of methods to corporately deal with the above limitation and leverage the abundant information in multi-annotated datasets: (1) Customized T-time Inner Sampling Network to promote the modeling flexibility and efficiently generate samples matching the ground-truth distribution of a number of annotators; (2) Uncertainty Degree defined for quantitatively measuring the uncertainty of each sample and the imbalance of the whole multi-annotated dataset from a brand new perspective; (3) Uncertainty-aware Data Augmentation Strategy to help probabilistic models adaptively fit samples with different ranges of uncertainty. We have evaluated each of them on both the publicly available lung nodule dataset and our in-house Liver Tumor dataset. Results show that our proposed methods achieves the overall best performance on both accuracy and efficiency, demonstrating its great potential in lesion segmentations and more downstream tasks in real clinical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YamDaamCaa应助快点毕业采纳,获得30
刚刚
绛仙旧友发布了新的文献求助10
刚刚
7秒前
yar应助qqwrv采纳,获得10
11秒前
李冯程完成签到,获得积分10
11秒前
ZZ发布了新的文献求助10
12秒前
木木圆完成签到 ,获得积分10
13秒前
绛仙旧友完成签到,获得积分10
14秒前
汤瀚文完成签到 ,获得积分10
14秒前
烟花应助fixing采纳,获得10
15秒前
16秒前
16秒前
16秒前
路漫漫123完成签到,获得积分10
18秒前
19秒前
YE完成签到,获得积分20
21秒前
WZJ关注了科研通微信公众号
21秒前
22秒前
方勇飞发布了新的文献求助10
22秒前
YE发布了新的文献求助10
24秒前
852应助微笑的语芙采纳,获得10
24秒前
wrjww完成签到,获得积分10
25秒前
25秒前
月下荷花发布了新的文献求助10
27秒前
right完成签到 ,获得积分10
29秒前
小俊发布了新的文献求助20
29秒前
30秒前
打打应助笑点低的元枫采纳,获得10
35秒前
35秒前
领导范儿应助刘大大采纳,获得10
35秒前
36秒前
36秒前
38秒前
39秒前
M88888发布了新的文献求助10
39秒前
40秒前
40秒前
缓慢如南应助lifeng采纳,获得10
41秒前
艺术家脾气完成签到,获得积分10
42秒前
fixing发布了新的文献求助10
43秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182