Customized T-time inner sampling network with uncertainty-aware data augmentation strategy for multi-annotated lesion segmentation

计算机科学 分割 采样(信号处理) 人工智能 病变 数据挖掘 模式识别(心理学) 机器学习 计算机视觉 医学 外科 滤波器(信号处理)
作者
Xi Zhou,Xinxin Wang,Haiqin Ma,J. Zhang,Xiaomei Wang,Xiuxiu Bai,Li Zhang,Jia Long,Jiakuan Chen,Hongbo Le,Wenjie He,Shen Zhao,Jun Xia,Guang Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:180: 108990-108990
标识
DOI:10.1016/j.compbiomed.2024.108990
摘要

Segmentation in medical images is inherently ambiguous. It is crucial to capture the uncertainty in lesion segmentations to assist cancer diagnosis and further interventions. Recent works have made great progress in generating multiple plausible segmentation results as diversified references to account for the uncertainty in lesion segmentations. However, the efficiency of existing models is limited, and the uncertainty information lying in multi-annotated datasets remains to be fully utilized. In this study, we propose a series of methods to corporately deal with the above limitation and leverage the abundant information in multi-annotated datasets: (1) Customized T-time Inner Sampling Network to promote the modeling flexibility and efficiently generate samples matching the ground-truth distribution of a number of annotators; (2) Uncertainty Degree defined for quantitatively measuring the uncertainty of each sample and the imbalance of the whole multi-annotated dataset from a brand new perspective; (3) Uncertainty-aware Data Augmentation Strategy to help probabilistic models adaptively fit samples with different ranges of uncertainty. We have evaluated each of them on both the publicly available lung nodule dataset and our in-house Liver Tumor dataset. Results show that our proposed methods achieves the overall best performance on both accuracy and efficiency, demonstrating its great potential in lesion segmentations and more downstream tasks in real clinical scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鱼辣椒发布了新的文献求助10
刚刚
秋水发布了新的文献求助10
1秒前
受伤不斜发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
星辰大海应助yy采纳,获得10
1秒前
晓倩完成签到,获得积分10
1秒前
轻云触月发布了新的文献求助10
2秒前
罗翊彰发布了新的文献求助10
2秒前
阿晖发布了新的文献求助10
2秒前
简单安南完成签到,获得积分10
2秒前
情怀应助拉长的冬云采纳,获得10
2秒前
3秒前
3秒前
SSQ完成签到,获得积分10
3秒前
Unpaid完成签到,获得积分10
3秒前
arui发布了新的文献求助10
4秒前
yy完成签到,获得积分20
4秒前
嘟嘟发布了新的文献求助10
4秒前
xin完成签到,获得积分20
4秒前
bkagyin应助科研狗采纳,获得10
5秒前
Orange应助林曳采纳,获得10
5秒前
孔雀翎发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
zhuo完成签到,获得积分10
7秒前
科目三应助莫默采纳,获得10
8秒前
Jeamren完成签到,获得积分10
8秒前
YANDD完成签到,获得积分10
8秒前
内向以彤完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
lili应助Vicky采纳,获得30
10秒前
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401