胶粘剂
制作
材料科学
纳米技术
高分子科学
复合材料
医学
替代医学
病理
图层(电子)
作者
Lili Xing,Haiwei Yang,Wenji Li,Jinping Cheng,Guoqiang Chen,Tieling Xing
标识
DOI:10.1016/j.ijbiomac.2024.135679
摘要
In recent years, the preparation of functional textiles based on polyphenols adhesion has received extensive attention and research. However, polyphenols are prone to peroxidation during oxidative polymerization, which can compromise the interfacial adhesion of their monomers. Reintroducing reactive functional groups after oxidative polymerization of polyphenols may potentially compensate for the lost interfacial adhesion while increasing cohesion. In this paper, L-alanine (Ala) is introduced into poly (tannic acid) (PTA) solution to generate the PTA-Ala via Michael addition and Schiff base reaction. Original cotton fabrics are modified with PTA-Ala solution to enhance adhesion strength between the fabrics and subsequent functional modifiers. A silver nanowire network is then incorporated to increase the surface roughness through tannic acid reduction. Finally, polydimethylsiloxane is applied to reduce fabric surface energy, resulting in superhydrophobic multifunctional OH-PDMS/Ag/PTA-Ala/cotton fabrics. The finished cotton fabric exhibits a water contact angle of 166.7 ± 1.9° and a rolling angle of 5 ± 0.5°. Moreover, the fabric features diverse functionalities such as oil-water separation, photothermal conversion, antimicrobial properties, water collection, and anti-icing capabilities, alongside excellent durability and self-healing properties that extend its service life. This finished cotton fabric demonstrates promising applications in oil pollution control, outdoor clothing and medical protection, highlighting its broad across various industries.
科研通智能强力驱动
Strongly Powered by AbleSci AI