已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image Super-resolution via Efficient Transformer Embedding Frequency Decomposition with Restart

嵌入 计算机科学 变压器 抽取 人工智能 快速傅里叶变换 增采样 计算机视觉 算法 图像(数学) 电压 滤波器(信号处理) 物理 量子力学
作者
Yifan Zuo,Wenhao Yao,Yuqi Hu,Yuming Fang,Wei Liu,Yuxin Peng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4670-4685 被引量:2
标识
DOI:10.1109/tip.2024.3444317
摘要

Recently, transformer-based backbones show superior performance over the convolutional counterparts in computer vision. Due to quadratic complexity with respect to the token number in global attention, local attention is always adopted in low-level image processing with linear complexity. However, the limited receptive field is harmful to the performance. In this paper, motivated by Octave convolution, we propose a transformer-based single image super-resolution (SISR) model, which explicitly embeds dynamic frequency decomposition into the standard local transformer. All the frequency components are continuously updated and re-assigned via intra-scale attention and inter-scale interaction, respectively. Specifically, the attention in low resolution is enough for low-frequency features, which not only increases the receptive field, but also decreases the complexity. Compared with the standard local transformer, the proposed FDRTran layer simultaneously decreases FLOPs and parameters. By contrast, Octave convolution only decreases FLOPs of the standard convolution, but keeps the parameter number unchanged. In addition, the restart mechanism is proposed for every a few frequency updates, which first fuses the low and high frequency, then decomposes the features again. In this way, the features can be decomposed in multiple viewpoints by learnable parameters, which avoids the risk of early saturation for frequency representation. Furthermore, based on the FDRTran layer with restart mechanism, the proposed FDRNet is the first transformer backbone for SISR which discusses the Octave design. Sufficient experiments show our model reaches state-of-the-art performance on 6 synthetic and real datasets. The code and the models are available at https://github.com/catnip1029/FDRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
可爱牛青发布了新的文献求助10
4秒前
充电宝应助kccccccc采纳,获得10
6秒前
8秒前
8秒前
天天快乐应助幽默夜阑采纳,获得10
9秒前
9秒前
今后应助哦萨尔采纳,获得10
11秒前
11秒前
Hello应助小星小星采纳,获得10
11秒前
NexusExplorer应助朱诗佳采纳,获得10
11秒前
Amber完成签到,获得积分10
11秒前
FashionBoy应助养乐多采纳,获得10
12秒前
yuan发布了新的文献求助10
12秒前
13秒前
archiz发布了新的文献求助10
14秒前
ssc完成签到,获得积分10
14秒前
科研通AI5应助yz123采纳,获得10
15秒前
田鸿平完成签到,获得积分10
16秒前
nhscyhy完成签到,获得积分10
17秒前
17秒前
Skywalker发布了新的文献求助30
18秒前
18秒前
shjyang完成签到,获得积分0
22秒前
22秒前
小鱼完成签到 ,获得积分10
23秒前
123完成签到,获得积分20
23秒前
23秒前
蔓蔓要努力完成签到,获得积分10
23秒前
Aurora完成签到 ,获得积分10
24秒前
jackone完成签到 ,获得积分10
26秒前
哦萨尔发布了新的文献求助10
28秒前
29秒前
眯眯眼的龙猫完成签到,获得积分10
30秒前
科研通AI6应助ssc采纳,获得10
31秒前
安德鲁发布了新的文献求助10
33秒前
34秒前
JamesPei应助justin采纳,获得10
35秒前
可爱的函函应助1111采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434