Image Super-resolution via Efficient Transformer Embedding Frequency Decomposition with Restart

嵌入 计算机科学 变压器 抽取 人工智能 快速傅里叶变换 增采样 计算机视觉 算法 图像(数学) 电压 量子力学 滤波器(信号处理) 物理
作者
Yifan Zuo,Wenhao Yao,Yuqi Hu,Yuming Fang,Wei Liu,Yuxin Peng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4670-4685 被引量:2
标识
DOI:10.1109/tip.2024.3444317
摘要

Recently, transformer-based backbones show superior performance over the convolutional counterparts in computer vision. Due to quadratic complexity with respect to the token number in global attention, local attention is always adopted in low-level image processing with linear complexity. However, the limited receptive field is harmful to the performance. In this paper, motivated by Octave convolution, we propose a transformer-based single image super-resolution (SISR) model, which explicitly embeds dynamic frequency decomposition into the standard local transformer. All the frequency components are continuously updated and re-assigned via intra-scale attention and inter-scale interaction, respectively. Specifically, the attention in low resolution is enough for low-frequency features, which not only increases the receptive field, but also decreases the complexity. Compared with the standard local transformer, the proposed FDRTran layer simultaneously decreases FLOPs and parameters. By contrast, Octave convolution only decreases FLOPs of the standard convolution, but keeps the parameter number unchanged. In addition, the restart mechanism is proposed for every a few frequency updates, which first fuses the low and high frequency, then decomposes the features again. In this way, the features can be decomposed in multiple viewpoints by learnable parameters, which avoids the risk of early saturation for frequency representation. Furthermore, based on the FDRTran layer with restart mechanism, the proposed FDRNet is the first transformer backbone for SISR which discusses the Octave design. Sufficient experiments show our model reaches state-of-the-art performance on 6 synthetic and real datasets. The code and the models are available at https://github.com/catnip1029/FDRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助www采纳,获得10
2秒前
lili发布了新的文献求助10
3秒前
暴扣三米线完成签到 ,获得积分10
3秒前
李爱国应助康康采纳,获得10
4秒前
心想事成发布了新的文献求助10
4秒前
6秒前
如意山晴完成签到 ,获得积分10
6秒前
7秒前
8秒前
林夕发布了新的文献求助10
9秒前
科研通AI6应助霸王丹采纳,获得10
9秒前
9秒前
10秒前
12秒前
李健应助猫蒲采纳,获得10
12秒前
逍遥子完成签到,获得积分10
12秒前
12秒前
宝石山完成签到,获得积分10
13秒前
布可完成签到,获得积分0
14秒前
xu发布了新的文献求助10
14秒前
小蘑菇应助科研顺利采纳,获得10
15秒前
15秒前
15秒前
16秒前
__发布了新的文献求助100
18秒前
wxy发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
共享精神应助11采纳,获得10
20秒前
浮游应助Liu采纳,获得10
20秒前
xiaoyu发布了新的文献求助10
20秒前
lhm完成签到,获得积分10
23秒前
小红吃红薯完成签到,获得积分20
24秒前
大满发布了新的文献求助10
24秒前
24秒前
科研通AI6应助等乙天采纳,获得10
26秒前
韩寒完成签到 ,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563431
求助须知:如何正确求助?哪些是违规求助? 4648294
关于积分的说明 14684348
捐赠科研通 4590281
什么是DOI,文献DOI怎么找? 2518423
邀请新用户注册赠送积分活动 1491102
关于科研通互助平台的介绍 1462386