Image Super-resolution via Efficient Transformer Embedding Frequency Decomposition with Restart

嵌入 计算机科学 变压器 图像分辨率 人工智能 图像处理 计算机视觉 模式识别(心理学) 算法 图像(数学) 电压 工程类 电气工程
作者
Yifan Zuo,Wanxiang Yao,Yuqi Hu,Yuming Fang,Wei Liu,Yuxin Peng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3444317
摘要

Recently, transformer-based backbones show superior performance over the convolutional counterparts in computer vision. Due to quadratic complexity with respect to the token number in global attention, local attention is always adopted in low-level image processing with linear complexity. However, the limited receptive field is harmful to the performance. In this paper, motivated by Octave convolution, we propose a transformer-based single image super-resolution (SISR) model, which explicitly embeds dynamic frequency decomposition into the standard local transformer. All the frequency components are continuously updated and re-assigned via intra-scale attention and inter-scale interaction, respectively. Specifically, the attention in low resolution is enough for low-frequency features, which not only increases the receptive field, but also decreases the complexity. Compared with the standard local transformer, the proposed FDRTran layer simultaneously decreases FLOPs and parameters. By contrast, Octave convolution only decreases FLOPs of the standard convolution, but keeps the parameter number unchanged. In addition, the restart mechanism is proposed for every a few frequency updates, which first fuses the low and high frequency, then decomposes the features again. In this way, the features can be decomposed in multiple viewpoints by learnable parameters, which avoids the risk of early saturation for frequency representation. Furthermore, based on the FDRTran layer with restart mechanism, the proposed FDRNet is the first transformer backbone for SISR which discusses the Octave design. Sufficient experiments show our model reaches state-of-the-art performance on 6 synthetic and real datasets. The code and the models are available at https://github.com/catnip1029/FDRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
静静子发布了新的文献求助10
3秒前
思源应助陶醉大侠采纳,获得10
5秒前
6秒前
调调单单完成签到,获得积分10
6秒前
7秒前
8秒前
www完成签到,获得积分10
10秒前
多多西瓜头丶完成签到,获得积分10
11秒前
11秒前
13秒前
李健应助mumu采纳,获得10
14秒前
所所应助gs19960828采纳,获得10
14秒前
古力果发布了新的文献求助10
14秒前
xy完成签到 ,获得积分10
15秒前
15秒前
wen发布了新的文献求助10
15秒前
16秒前
子车茗应助小刘采纳,获得10
17秒前
17秒前
19秒前
SPLjoker完成签到 ,获得积分10
20秒前
小柒发布了新的文献求助10
21秒前
22秒前
CodeCraft应助安静的棉花糖采纳,获得10
22秒前
me发布了新的文献求助10
23秒前
麻辣香郭完成签到 ,获得积分10
24秒前
害羞的裘发布了新的文献求助30
24秒前
Juyi完成签到,获得积分10
27秒前
Hello应助起风了采纳,获得10
29秒前
hygge完成签到,获得积分10
29秒前
29秒前
慧慧发布了新的文献求助20
31秒前
科研通AI2S应助仇剑封采纳,获得10
31秒前
31秒前
33秒前
爱静静应助hygge采纳,获得10
34秒前
36秒前
如愿发布了新的文献求助100
37秒前
听话的幼蓉完成签到,获得积分20
37秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171184
求助须知:如何正确求助?哪些是违规求助? 2822083
关于积分的说明 7937925
捐赠科研通 2482524
什么是DOI,文献DOI怎么找? 1322654
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627