Image Super-resolution via Efficient Transformer Embedding Frequency Decomposition with Restart

嵌入 计算机科学 变压器 抽取 人工智能 快速傅里叶变换 增采样 计算机视觉 算法 图像(数学) 电压 量子力学 滤波器(信号处理) 物理
作者
Yifan Zuo,Wenhao Yao,Yuqi Hu,Yuming Fang,Wei Liu,Yuxin Peng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4670-4685 被引量:2
标识
DOI:10.1109/tip.2024.3444317
摘要

Recently, transformer-based backbones show superior performance over the convolutional counterparts in computer vision. Due to quadratic complexity with respect to the token number in global attention, local attention is always adopted in low-level image processing with linear complexity. However, the limited receptive field is harmful to the performance. In this paper, motivated by Octave convolution, we propose a transformer-based single image super-resolution (SISR) model, which explicitly embeds dynamic frequency decomposition into the standard local transformer. All the frequency components are continuously updated and re-assigned via intra-scale attention and inter-scale interaction, respectively. Specifically, the attention in low resolution is enough for low-frequency features, which not only increases the receptive field, but also decreases the complexity. Compared with the standard local transformer, the proposed FDRTran layer simultaneously decreases FLOPs and parameters. By contrast, Octave convolution only decreases FLOPs of the standard convolution, but keeps the parameter number unchanged. In addition, the restart mechanism is proposed for every a few frequency updates, which first fuses the low and high frequency, then decomposes the features again. In this way, the features can be decomposed in multiple viewpoints by learnable parameters, which avoids the risk of early saturation for frequency representation. Furthermore, based on the FDRTran layer with restart mechanism, the proposed FDRNet is the first transformer backbone for SISR which discusses the Octave design. Sufficient experiments show our model reaches state-of-the-art performance on 6 synthetic and real datasets. The code and the models are available at https://github.com/catnip1029/FDRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼吖发布了新的文献求助10
1秒前
Twinkle完成签到,获得积分10
1秒前
逍遥游发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
等月光落雪地完成签到,获得积分10
5秒前
赘婿应助曾经盼易采纳,获得10
7秒前
哇呀呀发布了新的文献求助10
7秒前
8秒前
靓丽的宛菡完成签到,获得积分10
10秒前
向日葵完成签到,获得积分10
11秒前
直率的芫发布了新的文献求助10
12秒前
ray应助小明采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
Ava应助volcano采纳,获得10
13秒前
JamesYang发布了新的文献求助10
13秒前
ding应助zzc采纳,获得10
14秒前
向日葵发布了新的文献求助10
15秒前
plddbc发布了新的文献求助10
15秒前
山山而川发布了新的文献求助30
16秒前
guo完成签到 ,获得积分10
16秒前
dent强完成签到,获得积分10
17秒前
17秒前
Hello应助JamesYang采纳,获得10
18秒前
量子星尘发布了新的文献求助10
20秒前
超级棒棒糖完成签到 ,获得积分10
21秒前
小马甲应助123采纳,获得10
22秒前
LaTeXer应助QKOOKIE采纳,获得100
23秒前
24秒前
25秒前
李明应助痴情的尔岚采纳,获得10
25秒前
25秒前
Hebbe完成签到 ,获得积分10
26秒前
今后应助YaoHui采纳,获得30
26秒前
痴情的阁发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
梦槐发布了新的文献求助10
29秒前
30秒前
坚定山柳完成签到,获得积分10
32秒前
LGChemistry完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317