Fraud Detection by Integrating Multisource Heterogeneous Presence-Only Data

计算机科学 数据挖掘
作者
Yongqin Qiu,Yuanxing Chen,Kan Fang,Lean Yu,Kuangnan Fang
出处
期刊:Informs Journal on Computing 卷期号:37 (4): 998-1017
标识
DOI:10.1287/ijoc.2023.0366
摘要

In credit fraud detection practice, certain fraudulent transactions often evade detection because of the hidden nature of fraudulent behavior. To address this issue, an increasing number of positive-unlabeled (PU) learning techniques have been employed by more and more financial institutions. However, most of these methods are designed for single data sets and do not take into account the heterogeneity of data when they are collected from different sources. In this paper, we propose an integrative PU learning method (I-PU) for pooling information from multiple heterogeneous PU data sets. A novel approach that penalizes group differences is developed to explicitly and automatically identify the cluster structures of coefficients across different data sets, thus offering a plausible interpretation of heterogeneity. Furthermore, we apply a bilevel selection method to detect the sparse structure at both the group level and within-group level. Theoretically, we show that our proposed estimator has the oracle property. Computationally, we design an expectation-maximization (EM) algorithm framework and propose an alternating direction method of multipliers (ADMM) algorithm to solve it. Simulation results show that our proposed method has better numerical performance in terms of variable selection, parameter estimation, and prediction ability. Finally, a real-world application showcases the effectiveness of our method in identifying distinct coefficient clusters and its superior prediction performance compared with direct data merging or separate modeling. This result also offers valuable insights for financial institutions in developing targeted fraud detection systems. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72071169, 72231005, 72233002, and 72471169], the Fundamental Research Funds for the Central Universities of China [Grant 20720231060], the National Social Science Fund of China [Grant 21&ZD146], and Shuimu Tsinghua Scholar Program. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0366 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0366 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Lucins采纳,获得10
1秒前
1秒前
欣喜雅香发布了新的文献求助10
1秒前
华仔应助RE采纳,获得10
1秒前
Niki完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6.1应助12采纳,获得10
4秒前
5秒前
lllate完成签到 ,获得积分10
5秒前
5秒前
5秒前
棠棠发布了新的文献求助10
7秒前
孙伟健发布了新的文献求助10
8秒前
冷傲书萱应助元谷雪采纳,获得10
8秒前
大模型应助念安采纳,获得10
8秒前
dkx完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
dodo发布了新的文献求助10
11秒前
12秒前
cL发布了新的文献求助10
12秒前
诚心的忆灵完成签到,获得积分10
14秒前
蔚蓝发布了新的文献求助10
15秒前
free_man完成签到,获得积分10
15秒前
葡萄王子完成签到,获得积分10
16秒前
ruihan完成签到 ,获得积分10
16秒前
葛洪成发布了新的文献求助30
16秒前
可爱的函函应助詹卫卫采纳,获得10
16秒前
17秒前
18秒前
pp完成签到,获得积分20
18秒前
菜菜完成签到 ,获得积分10
18秒前
柔弱思卉完成签到 ,获得积分10
18秒前
蔚蓝完成签到 ,获得积分10
19秒前
19秒前
pluto应助搞笑的随机昵称采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760949
求助须知:如何正确求助?哪些是违规求助? 5526930
关于积分的说明 15398694
捐赠科研通 4897597
什么是DOI,文献DOI怎么找? 2634253
邀请新用户注册赠送积分活动 1582378
关于科研通互助平台的介绍 1537706