Fraud Detection by Integrating Multisource Heterogeneous Presence-Only Data

计算机科学 数据挖掘
作者
Yongqin Qiu,Yuanxing Chen,Kan Fang,Lean Yu,Kuangnan Fang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0366
摘要

In credit fraud detection practice, certain fraudulent transactions often evade detection because of the hidden nature of fraudulent behavior. To address this issue, an increasing number of positive-unlabeled (PU) learning techniques have been employed by more and more financial institutions. However, most of these methods are designed for single data sets and do not take into account the heterogeneity of data when they are collected from different sources. In this paper, we propose an integrative PU learning method (I-PU) for pooling information from multiple heterogeneous PU data sets. A novel approach that penalizes group differences is developed to explicitly and automatically identify the cluster structures of coefficients across different data sets, thus offering a plausible interpretation of heterogeneity. Furthermore, we apply a bilevel selection method to detect the sparse structure at both the group level and within-group level. Theoretically, we show that our proposed estimator has the oracle property. Computationally, we design an expectation-maximization (EM) algorithm framework and propose an alternating direction method of multipliers (ADMM) algorithm to solve it. Simulation results show that our proposed method has better numerical performance in terms of variable selection, parameter estimation, and prediction ability. Finally, a real-world application showcases the effectiveness of our method in identifying distinct coefficient clusters and its superior prediction performance compared with direct data merging or separate modeling. This result also offers valuable insights for financial institutions in developing targeted fraud detection systems. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72071169, 72231005, 72233002, and 72471169], the Fundamental Research Funds for the Central Universities of China [Grant 20720231060], the National Social Science Fund of China [Grant 21&ZD146], and Shuimu Tsinghua Scholar Program. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0366 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0366 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
畅快芝麻发布了新的文献求助10
3秒前
zriverm发布了新的文献求助10
5秒前
干煸鸡发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
呸呸晓鹏发布了新的文献求助10
13秒前
枫之林发布了新的文献求助10
14秒前
小蘑菇应助zriverm采纳,获得10
16秒前
16秒前
16秒前
SciGPT应助小鱼采纳,获得10
17秒前
学术渣渣发布了新的文献求助30
17秒前
渡劫完成签到,获得积分10
18秒前
18秒前
21秒前
靓丽雨梅完成签到 ,获得积分10
21秒前
等待的花生完成签到,获得积分10
21秒前
23秒前
Mangues发布了新的文献求助30
23秒前
呸呸晓鹏完成签到,获得积分20
23秒前
搜集达人应助xuxu采纳,获得10
24秒前
111111关注了科研通微信公众号
25秒前
25秒前
25秒前
小唐尼发布了新的文献求助30
29秒前
29秒前
33秒前
彭于晏应助gewenxue采纳,获得10
34秒前
幸福大白发布了新的文献求助10
36秒前
yyyy完成签到,获得积分10
37秒前
zx完成签到,获得积分10
37秒前
38秒前
肥猫完成签到,获得积分10
40秒前
Aixia发布了新的文献求助10
41秒前
小唐尼完成签到,获得积分10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073