Fraud Detection by Integrating Multisource Heterogeneous Presence-Only Data

计算机科学 数据挖掘
作者
Yongqin Qiu,Yuanxing Chen,Kan Fang,Lean Yu,Kuangnan Fang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0366
摘要

In credit fraud detection practice, certain fraudulent transactions often evade detection because of the hidden nature of fraudulent behavior. To address this issue, an increasing number of positive-unlabeled (PU) learning techniques have been employed by more and more financial institutions. However, most of these methods are designed for single data sets and do not take into account the heterogeneity of data when they are collected from different sources. In this paper, we propose an integrative PU learning method (I-PU) for pooling information from multiple heterogeneous PU data sets. A novel approach that penalizes group differences is developed to explicitly and automatically identify the cluster structures of coefficients across different data sets, thus offering a plausible interpretation of heterogeneity. Furthermore, we apply a bilevel selection method to detect the sparse structure at both the group level and within-group level. Theoretically, we show that our proposed estimator has the oracle property. Computationally, we design an expectation-maximization (EM) algorithm framework and propose an alternating direction method of multipliers (ADMM) algorithm to solve it. Simulation results show that our proposed method has better numerical performance in terms of variable selection, parameter estimation, and prediction ability. Finally, a real-world application showcases the effectiveness of our method in identifying distinct coefficient clusters and its superior prediction performance compared with direct data merging or separate modeling. This result also offers valuable insights for financial institutions in developing targeted fraud detection systems. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72071169, 72231005, 72233002, and 72471169], the Fundamental Research Funds for the Central Universities of China [Grant 20720231060], the National Social Science Fund of China [Grant 21&ZD146], and Shuimu Tsinghua Scholar Program. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0366 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0366 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
守望阳光1完成签到,获得积分10
刚刚
正直天空发布了新的文献求助10
刚刚
2秒前
YU发布了新的文献求助10
2秒前
大方元风完成签到 ,获得积分10
2秒前
隐形曼青应助自觉寒梦采纳,获得10
3秒前
ntxlks完成签到,获得积分10
3秒前
祝雲完成签到,获得积分10
3秒前
Spice完成签到 ,获得积分10
4秒前
John完成签到,获得积分20
4秒前
高高诗柳发布了新的文献求助10
5秒前
5秒前
江舟添盛望完成签到 ,获得积分10
7秒前
7秒前
晶晶发布了新的文献求助10
8秒前
大气灵枫发布了新的文献求助10
8秒前
不安的硬币应助DrW采纳,获得10
9秒前
yuanletong完成签到 ,获得积分10
9秒前
趁微风不躁完成签到,获得积分10
10秒前
小灰灰完成签到 ,获得积分10
14秒前
15秒前
miemie完成签到,获得积分10
15秒前
郑森友完成签到,获得积分10
15秒前
16秒前
小柯基学从零学起完成签到 ,获得积分10
16秒前
额2完成签到,获得积分20
16秒前
正直的煎饼完成签到,获得积分10
16秒前
Nuyoah完成签到,获得积分10
17秒前
晶晶完成签到,获得积分20
18秒前
22222发布了新的文献求助10
18秒前
19秒前
19秒前
adazbq完成签到 ,获得积分0
21秒前
苏苏完成签到 ,获得积分10
21秒前
DrW完成签到,获得积分10
22秒前
1no完成签到 ,获得积分10
22秒前
yizhe发布了新的文献求助10
23秒前
23秒前
Eton完成签到,获得积分10
23秒前
伍六七完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029