已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fraud Detection by Integrating Multisource Heterogeneous Presence-Only Data

计算机科学 数据挖掘
作者
Yongqin Qiu,Yuanxing Chen,Kan Fang,Lean Yu,Kuangnan Fang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0366
摘要

In credit fraud detection practice, certain fraudulent transactions often evade detection because of the hidden nature of fraudulent behavior. To address this issue, an increasing number of positive-unlabeled (PU) learning techniques have been employed by more and more financial institutions. However, most of these methods are designed for single data sets and do not take into account the heterogeneity of data when they are collected from different sources. In this paper, we propose an integrative PU learning method (I-PU) for pooling information from multiple heterogeneous PU data sets. A novel approach that penalizes group differences is developed to explicitly and automatically identify the cluster structures of coefficients across different data sets, thus offering a plausible interpretation of heterogeneity. Furthermore, we apply a bilevel selection method to detect the sparse structure at both the group level and within-group level. Theoretically, we show that our proposed estimator has the oracle property. Computationally, we design an expectation-maximization (EM) algorithm framework and propose an alternating direction method of multipliers (ADMM) algorithm to solve it. Simulation results show that our proposed method has better numerical performance in terms of variable selection, parameter estimation, and prediction ability. Finally, a real-world application showcases the effectiveness of our method in identifying distinct coefficient clusters and its superior prediction performance compared with direct data merging or separate modeling. This result also offers valuable insights for financial institutions in developing targeted fraud detection systems. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72071169, 72231005, 72233002, and 72471169], the Fundamental Research Funds for the Central Universities of China [Grant 20720231060], the National Social Science Fund of China [Grant 21&ZD146], and Shuimu Tsinghua Scholar Program. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0366 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0366 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
VIAI完成签到,获得积分10
3秒前
田様应助咪呀采纳,获得10
4秒前
毅力鸟完成签到,获得积分10
4秒前
yx_cheng应助多年以后采纳,获得10
5秒前
W29完成签到,获得积分10
5秒前
kaka完成签到,获得积分0
6秒前
夜游的鱼完成签到 ,获得积分10
6秒前
flyingdodoro发布了新的文献求助10
8秒前
小蘑菇应助坚定的惋清采纳,获得30
10秒前
乐观的蜗牛完成签到 ,获得积分10
11秒前
Dream点壹完成签到,获得积分10
14秒前
酒醉的蝴蝶完成签到 ,获得积分10
16秒前
16秒前
充电宝应助左肩微笑采纳,获得10
18秒前
谨慎的友安完成签到 ,获得积分10
18秒前
19秒前
19秒前
橘橘橘子皮完成签到 ,获得积分10
20秒前
牛奶拌可乐完成签到 ,获得积分10
20秒前
20秒前
Mae完成签到 ,获得积分10
20秒前
白芷当归发布了新的文献求助10
21秒前
粥粥完成签到 ,获得积分10
21秒前
jenningseastera完成签到,获得积分0
21秒前
星河完成签到,获得积分10
22秒前
SSS发布了新的文献求助10
24秒前
joysa完成签到,获得积分10
24秒前
尹静涵完成签到 ,获得积分10
24秒前
梦想完成签到,获得积分20
28秒前
二牛完成签到,获得积分10
28秒前
29秒前
汤汤完成签到 ,获得积分10
29秒前
呼呼呼完成签到 ,获得积分10
31秒前
英俊小鼠完成签到,获得积分10
31秒前
wangfaqing942完成签到 ,获得积分10
31秒前
31秒前
科研界的恩希玛完成签到,获得积分10
32秒前
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989957
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11255966
捐赠科研通 3270856
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882252
科研通“疑难数据库(出版商)”最低求助积分说明 809216