Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning

液压成形 有限元法 管(容器) 计算机科学 要素(刑法) 机械工程 结构工程 工程制图 工程类 政治学 法学
作者
Liang Cheng,Hao Guo,Lingyan Sun,Jing Wang,Feng Sun,Jinshan Li
出处
期刊:Journal of manufacturing and materials processing [MDPI AG]
卷期号:8 (4): 175-175
标识
DOI:10.3390/jmmp8040175
摘要

The real-time, full-field simulation of the tube hydroforming process is crucial for deformation monitoring and the timely prediction of defects. However, this is rather difficult for finite-element simulation due to its time-consuming nature. To overcome this drawback, in this paper, a surrogate model framework was proposed by integrating the finite-element method (FEM) and machine learning (ML), in which the basic methodology involved interrupting the computational workflow of the FEM and reassembling it with ML. Specifically, the displacement field, as the primary unknown quantity to be solved using the FEM, was mapped onto the displacement boundary conditions of the tube component with ML. To this end, the titanium tube material as well as the hydroforming process was investigated, and a fairly accurate FEM model was developed based on the CPB06 yield criterion coupled with a simplified Kim–Tuan hardening model. Numerous FEM simulations were performed by varying the loading conditions to generate the training database for ML. Then, a random forest algorithm was applied and trained to develop the surrogate model, in which the grid search method was employed to obtain the optimal combination of the hyperparameters. Sequentially, the principal strain, the effective strain/stress, as well as the wall thickness was derived according to continuum mechanics theories. Although further improvements were required in certain aspects, the developed FEM-ML surrogate model delivered extraordinary accuracy and instantaneity in reproducing multi-physical fields, especially the displacement field and wall-thickness distribution, manifesting its feasibility in the real-time, full-field simulation and monitoring of deformation states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赖道之发布了新的文献求助10
1秒前
calbee完成签到,获得积分10
1秒前
1秒前
和谐白云完成签到,获得积分10
2秒前
2秒前
2秒前
王w发布了新的文献求助10
3秒前
yyyyy完成签到,获得积分10
4秒前
4秒前
大侠发布了新的文献求助10
4秒前
魁梧的乐天完成签到,获得积分20
4秒前
冯度翩翩完成签到,获得积分10
5秒前
科研通AI2S应助satchzhao采纳,获得10
5秒前
jijizz完成签到,获得积分10
6秒前
一一发布了新的文献求助10
6秒前
小马甲应助ChiDaiOLD采纳,获得10
6秒前
6秒前
鳗鱼灵寒发布了新的文献求助10
7秒前
shatang发布了新的文献求助10
7秒前
lesyeuxdexx完成签到 ,获得积分10
9秒前
10秒前
程琳完成签到,获得积分20
11秒前
12秒前
卓哥发布了新的文献求助10
12秒前
科研通AI5应助sansan采纳,获得10
13秒前
13秒前
13秒前
脑洞疼应助杰森斯坦虎采纳,获得10
13秒前
15秒前
16秒前
研友_QQC完成签到,获得积分10
16秒前
NeuroWhite完成签到,获得积分10
16秒前
16秒前
搜索v完成签到,获得积分10
17秒前
liuchuck完成签到 ,获得积分10
17秒前
17秒前
17秒前
猫独秀完成签到,获得积分10
17秒前
19秒前
buno应助yuefeng采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808