Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning

液压成形 有限元法 管(容器) 计算机科学 要素(刑法) 机械工程 结构工程 工程制图 工程类 政治学 法学
作者
Liang Cheng,Hao Guo,Lingyan Sun,Jing Wang,Feng Sun,Jinshan Li
出处
期刊:Journal of manufacturing and materials processing [Multidisciplinary Digital Publishing Institute]
卷期号:8 (4): 175-175
标识
DOI:10.3390/jmmp8040175
摘要

The real-time, full-field simulation of the tube hydroforming process is crucial for deformation monitoring and the timely prediction of defects. However, this is rather difficult for finite-element simulation due to its time-consuming nature. To overcome this drawback, in this paper, a surrogate model framework was proposed by integrating the finite-element method (FEM) and machine learning (ML), in which the basic methodology involved interrupting the computational workflow of the FEM and reassembling it with ML. Specifically, the displacement field, as the primary unknown quantity to be solved using the FEM, was mapped onto the displacement boundary conditions of the tube component with ML. To this end, the titanium tube material as well as the hydroforming process was investigated, and a fairly accurate FEM model was developed based on the CPB06 yield criterion coupled with a simplified Kim–Tuan hardening model. Numerous FEM simulations were performed by varying the loading conditions to generate the training database for ML. Then, a random forest algorithm was applied and trained to develop the surrogate model, in which the grid search method was employed to obtain the optimal combination of the hyperparameters. Sequentially, the principal strain, the effective strain/stress, as well as the wall thickness was derived according to continuum mechanics theories. Although further improvements were required in certain aspects, the developed FEM-ML surrogate model delivered extraordinary accuracy and instantaneity in reproducing multi-physical fields, especially the displacement field and wall-thickness distribution, manifesting its feasibility in the real-time, full-field simulation and monitoring of deformation states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Karouline完成签到,获得积分10
1秒前
大力冰绿应助111111采纳,获得20
1秒前
lightshark发布了新的文献求助10
2秒前
sunny完成签到,获得积分10
2秒前
2秒前
李春晓完成签到,获得积分10
3秒前
semigreen完成签到 ,获得积分10
3秒前
daisy_chen完成签到,获得积分10
5秒前
华仔应助cindy采纳,获得10
5秒前
5秒前
6秒前
6秒前
欣__完成签到,获得积分10
6秒前
echo发布了新的文献求助10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
健壮可冥完成签到 ,获得积分10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
77应助科研通管家采纳,获得10
7秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
aliensas发布了新的文献求助10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
燕儿应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
小菜花完成签到,获得积分10
8秒前
花开的石头完成签到,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
稳重的薯片完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283823
求助须知:如何正确求助?哪些是违规求助? 4437576
关于积分的说明 13813988
捐赠科研通 4318377
什么是DOI,文献DOI怎么找? 2370395
邀请新用户注册赠送积分活动 1365780
关于科研通互助平台的介绍 1329225