Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning

液压成形 有限元法 管(容器) 计算机科学 要素(刑法) 机械工程 结构工程 工程制图 工程类 政治学 法学
作者
Liang Cheng,Hao Guo,Lingyan Sun,Jing Wang,Feng Sun,Jinshan Li
出处
期刊:Journal of manufacturing and materials processing [Multidisciplinary Digital Publishing Institute]
卷期号:8 (4): 175-175
标识
DOI:10.3390/jmmp8040175
摘要

The real-time, full-field simulation of the tube hydroforming process is crucial for deformation monitoring and the timely prediction of defects. However, this is rather difficult for finite-element simulation due to its time-consuming nature. To overcome this drawback, in this paper, a surrogate model framework was proposed by integrating the finite-element method (FEM) and machine learning (ML), in which the basic methodology involved interrupting the computational workflow of the FEM and reassembling it with ML. Specifically, the displacement field, as the primary unknown quantity to be solved using the FEM, was mapped onto the displacement boundary conditions of the tube component with ML. To this end, the titanium tube material as well as the hydroforming process was investigated, and a fairly accurate FEM model was developed based on the CPB06 yield criterion coupled with a simplified Kim–Tuan hardening model. Numerous FEM simulations were performed by varying the loading conditions to generate the training database for ML. Then, a random forest algorithm was applied and trained to develop the surrogate model, in which the grid search method was employed to obtain the optimal combination of the hyperparameters. Sequentially, the principal strain, the effective strain/stress, as well as the wall thickness was derived according to continuum mechanics theories. Although further improvements were required in certain aspects, the developed FEM-ML surrogate model delivered extraordinary accuracy and instantaneity in reproducing multi-physical fields, especially the displacement field and wall-thickness distribution, manifesting its feasibility in the real-time, full-field simulation and monitoring of deformation states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
katrina完成签到,获得积分10
1秒前
1秒前
2秒前
马登完成签到,获得积分10
2秒前
离言完成签到,获得积分10
2秒前
知性的问玉完成签到,获得积分10
2秒前
3秒前
酚羟基装醇完成签到,获得积分10
4秒前
亚当完成签到 ,获得积分10
4秒前
清清甜应助lzh采纳,获得10
4秒前
永远55度发布了新的文献求助10
5秒前
6666666发布了新的文献求助10
5秒前
童话完成签到,获得积分10
5秒前
5秒前
sujinyu发布了新的文献求助10
5秒前
lkk完成签到,获得积分10
6秒前
勤勤的新星完成签到,获得积分10
6秒前
6秒前
科研小牛马完成签到,获得积分10
6秒前
guohuameike完成签到,获得积分10
7秒前
zanedou完成签到,获得积分10
7秒前
红绿蓝完成签到 ,获得积分10
7秒前
7秒前
希望天下0贩的0应助ggdio采纳,获得10
7秒前
NANFENGSUSU发布了新的文献求助10
8秒前
8秒前
天天快乐应助justonce采纳,获得10
8秒前
8秒前
8秒前
你去打输出关注了科研通微信公众号
8秒前
9秒前
阳光明媚完成签到,获得积分10
9秒前
Akim应助胡小壳采纳,获得10
9秒前
10秒前
青灿笑完成签到,获得积分10
11秒前
小超人发布了新的文献求助30
11秒前
11秒前
落落完成签到 ,获得积分10
11秒前
11秒前
永远55度完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044