Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning

液压成形 有限元法 管(容器) 计算机科学 要素(刑法) 机械工程 结构工程 工程制图 工程类 政治学 法学
作者
Liang Cheng,Hao Guo,Lingyan Sun,Jing Wang,Feng Sun,Jinshan Li
出处
期刊:Journal of manufacturing and materials processing [MDPI AG]
卷期号:8 (4): 175-175
标识
DOI:10.3390/jmmp8040175
摘要

The real-time, full-field simulation of the tube hydroforming process is crucial for deformation monitoring and the timely prediction of defects. However, this is rather difficult for finite-element simulation due to its time-consuming nature. To overcome this drawback, in this paper, a surrogate model framework was proposed by integrating the finite-element method (FEM) and machine learning (ML), in which the basic methodology involved interrupting the computational workflow of the FEM and reassembling it with ML. Specifically, the displacement field, as the primary unknown quantity to be solved using the FEM, was mapped onto the displacement boundary conditions of the tube component with ML. To this end, the titanium tube material as well as the hydroforming process was investigated, and a fairly accurate FEM model was developed based on the CPB06 yield criterion coupled with a simplified Kim–Tuan hardening model. Numerous FEM simulations were performed by varying the loading conditions to generate the training database for ML. Then, a random forest algorithm was applied and trained to develop the surrogate model, in which the grid search method was employed to obtain the optimal combination of the hyperparameters. Sequentially, the principal strain, the effective strain/stress, as well as the wall thickness was derived according to continuum mechanics theories. Although further improvements were required in certain aspects, the developed FEM-ML surrogate model delivered extraordinary accuracy and instantaneity in reproducing multi-physical fields, especially the displacement field and wall-thickness distribution, manifesting its feasibility in the real-time, full-field simulation and monitoring of deformation states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的水桃完成签到,获得积分10
刚刚
1秒前
糊涂的凡发布了新的文献求助10
2秒前
ardejiang发布了新的文献求助10
3秒前
3秒前
Lucas应助危机的太英采纳,获得10
8秒前
8秒前
德鲁大叔完成签到,获得积分10
9秒前
动人的ccc发布了新的文献求助10
10秒前
领导范儿应助阿秋采纳,获得10
11秒前
999发布了新的文献求助10
11秒前
12秒前
12秒前
Orange应助鲤鱼谷秋采纳,获得10
14秒前
14秒前
JiaWong完成签到,获得积分20
15秒前
MoonFlows应助Euphoria采纳,获得20
15秒前
JiaWong发布了新的文献求助10
18秒前
roclie发布了新的文献求助10
18秒前
19秒前
张张完成签到,获得积分10
22秒前
英姑应助HYT采纳,获得10
23秒前
情怀应助桐夏采纳,获得10
23秒前
张张发布了新的文献求助10
24秒前
波比冰苏打完成签到 ,获得积分10
25秒前
25秒前
脑洞疼应助roclie采纳,获得10
25秒前
26秒前
852应助帆帆帆采纳,获得10
27秒前
gyl完成签到 ,获得积分10
30秒前
秀丽香露发布了新的文献求助10
30秒前
鲤鱼谷秋发布了新的文献求助10
30秒前
思源应助lzz采纳,获得10
30秒前
33秒前
Akim应助不周采纳,获得10
34秒前
35秒前
科研通AI2S应助飞云采纳,获得10
35秒前
帆帆帆发布了新的文献求助10
38秒前
李冰浩关注了科研通微信公众号
39秒前
xmfffff完成签到,获得积分10
41秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157329
求助须知:如何正确求助?哪些是违规求助? 2808824
关于积分的说明 7878475
捐赠科研通 2467158
什么是DOI,文献DOI怎么找? 1313222
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919