亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning

液压成形 有限元法 管(容器) 计算机科学 要素(刑法) 机械工程 结构工程 工程制图 工程类 政治学 法学
作者
Liang Cheng,Hao Guo,Lingyan Sun,Jing Wang,Feng Sun,Jinshan Li
出处
期刊:Journal of manufacturing and materials processing [MDPI AG]
卷期号:8 (4): 175-175
标识
DOI:10.3390/jmmp8040175
摘要

The real-time, full-field simulation of the tube hydroforming process is crucial for deformation monitoring and the timely prediction of defects. However, this is rather difficult for finite-element simulation due to its time-consuming nature. To overcome this drawback, in this paper, a surrogate model framework was proposed by integrating the finite-element method (FEM) and machine learning (ML), in which the basic methodology involved interrupting the computational workflow of the FEM and reassembling it with ML. Specifically, the displacement field, as the primary unknown quantity to be solved using the FEM, was mapped onto the displacement boundary conditions of the tube component with ML. To this end, the titanium tube material as well as the hydroforming process was investigated, and a fairly accurate FEM model was developed based on the CPB06 yield criterion coupled with a simplified Kim–Tuan hardening model. Numerous FEM simulations were performed by varying the loading conditions to generate the training database for ML. Then, a random forest algorithm was applied and trained to develop the surrogate model, in which the grid search method was employed to obtain the optimal combination of the hyperparameters. Sequentially, the principal strain, the effective strain/stress, as well as the wall thickness was derived according to continuum mechanics theories. Although further improvements were required in certain aspects, the developed FEM-ML surrogate model delivered extraordinary accuracy and instantaneity in reproducing multi-physical fields, especially the displacement field and wall-thickness distribution, manifesting its feasibility in the real-time, full-field simulation and monitoring of deformation states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
13秒前
小伙子应助贝壳beck采纳,获得150
13秒前
冷静夜蕾完成签到,获得积分10
18秒前
30秒前
YifanWang应助科研通管家采纳,获得10
33秒前
YifanWang应助科研通管家采纳,获得10
33秒前
33秒前
44秒前
kuoping完成签到,获得积分0
45秒前
su完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
魔幻友菱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
SciGPT应助小小K采纳,获得10
1分钟前
吼吼哈嘿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
小小K发布了新的文献求助10
2分钟前
2分钟前
2分钟前
William完成签到 ,获得积分10
2分钟前
直率的摩托完成签到,获得积分20
2分钟前
2分钟前
2分钟前
LeeHx完成签到,获得积分10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723857
求助须知:如何正确求助?哪些是违规求助? 5281752
关于积分的说明 15299292
捐赠科研通 4872127
什么是DOI,文献DOI怎么找? 2616571
邀请新用户注册赠送积分活动 1566419
关于科研通互助平台的介绍 1523277