Contextualizing Team Adaptation for Fostering Creative Outcomes in Multicultural Virtual Teams: A Mixed Methods Approach

创造力 适应(眼睛) 知识管理 心理学 规则网络 文化智力 团队合作 虚拟协作 元认知 认知 社会文化进化 计算机科学 社会心理学 社会学 结构方程建模 管理 神经科学 机器学习 人类学 经济
作者
Anuragini Shirish,Shirish C. Srivastava,Imed Boughzala
出处
期刊:Journal of the Association for Information Systems [Association for Information Systems]
卷期号:24 (3): 700-744 被引量:1
标识
DOI:10.17705/1jais.00811
摘要

Rapid developments in real-time collaborative technologies, coupled with the quest for innovation and creativity, have made global virtual teams (GVTs) a viable workplace collaboration option that many companies are turning to. Although diverse team member perspectives in GVTs are expected to foster creativity, cultural diversity within GVTs also poses significant challenges related to knowledge exchange and integration among team members. Grounding our work in the team adaptation and cultural intelligence (CQ) literatures, we suggest CQ as a plausible modality for cultural adaptation in GVTs. Specifically, we propose a nomological network comprising CQ dimensions (motivation, cognition, metacognition, and behavior) serving as a cultural adaptation mechanism for fostering creativity in GVT outcomes. We contextualize and extend CQ theory, which has previously focused on face-to-face contexts, to the virtual collaborative GVT environment. For this, we conceptualize the significant role of deep-level implicitly negotiated adaptative behavior (role structure adaptation) in GVTs—in addition to surface-level explicitly displayed adaptative behavior (CQ behavior). We tested the proposed model through a sequential mixed methods approach that integrated the results from a quantitative two-wave survey study with findings from a qualitative study comprising expert interviews, to arrive at rich and robust inferences and metainferences. The proposed CQ-for-GVT framework, along with delineated boundary conditions and associated propositions, explicates an integrative model explaining the role of CQ for GVT creativity performance. The delineated model not only has theoretical implications but also provides useful directions for GVT practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
跳跃雨寒完成签到 ,获得积分10
2秒前
2秒前
曾梦发布了新的文献求助10
4秒前
账户已注销应助敏感绿竹采纳,获得50
5秒前
洁净的过客完成签到,获得积分10
6秒前
香蕉觅云应助san心心采纳,获得10
8秒前
咕噜咕噜发布了新的文献求助10
9秒前
张又蓝发布了新的文献求助10
10秒前
10秒前
上官若男应助xs采纳,获得10
11秒前
科研通AI2S应助Carioao采纳,获得10
12秒前
慕青应助一条蛆采纳,获得10
14秒前
16秒前
16秒前
17秒前
cgg发布了新的文献求助10
19秒前
19秒前
20秒前
ttTINA完成签到,获得积分10
20秒前
自由香魔发布了新的文献求助10
20秒前
SICHEN完成签到,获得积分10
22秒前
LL发布了新的文献求助10
22秒前
爆米花应助大麦迪采纳,获得10
24秒前
oceanao应助光亮的柚子采纳,获得10
25秒前
shawn发布了新的文献求助10
26秒前
26秒前
啦啦啦完成签到,获得积分20
29秒前
典雅涵瑶发布了新的文献求助10
29秒前
汉堡包完成签到,获得积分10
29秒前
30秒前
31秒前
oceanao应助LJ采纳,获得10
31秒前
Celestine完成签到,获得积分10
33秒前
sjj发布了新的文献求助30
36秒前
36秒前
38秒前
大麦迪发布了新的文献求助10
40秒前
41秒前
研友_8RyB3Z完成签到,获得积分10
42秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7878979
捐赠科研通 2467322
什么是DOI,文献DOI怎么找? 1313355
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919