亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spectral–Spatial Depth-Based Framework for Hyperspectral Underwater Target Detection

高光谱成像 水下 计算机科学 稳健性(进化) 遥感 人工智能 模式识别(心理学) 光谱特征 地质学 生物化学 基因 海洋学 化学
作者
Qi Li,Jinghua Li,Tong Li,Zheyong Li,Pei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:8
标识
DOI:10.1109/tgrs.2023.3275147
摘要

Ocean-related research is of critical significance to the national marine military force. Hyperspectral underwater target detection (HUTD) has attracted widespread attention in recent years. However, most of the previous methods only relied on the spectral features of underwater targets and did not fully exploit their spatial characteristics. To address the issue, a spectral-spatial depth-based framework is proposed, which utilizes 3D convolution operation to capture spectral-spatial features and gains finer detection based on predicted depth. Especially, the proposed framework adopts the data transferring network to remove the noise interference by transferring the real hyperspectral data into corresponding synthetic data, which are exploited to train models. Then, considering that underwater target spectra highly depend on its depth in water, the depth estimation network is utilized to predict an accurate depth of a target, which can contribute to selecting a suitable detection network and gaining a general contour of the target. Since the underwater target spectrum is jointly determined by the target and the surrounding water column, the spectral-spatial detection network extracts the spectral-spatial features for underwater target detection. Using pool dataset, sea dataset and a synthetic HSI, we evaluate the performance of the proposed framework in terms of ROC curve and AUC value, both qualitatively and quantitatively. Meanwhile, extensive detection experiments demonstrate the robustness and effectiveness of the TDSS-UTD over several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助小艺采纳,获得10
4秒前
4秒前
脑洞疼应助jijiguo采纳,获得10
7秒前
CipherSage应助廷聿采纳,获得10
8秒前
12秒前
科研通AI6应助彦黄子孙采纳,获得10
14秒前
淡定的天问完成签到 ,获得积分10
17秒前
jijiguo发布了新的文献求助10
18秒前
19秒前
21秒前
甘楽发布了新的文献求助10
22秒前
看到就去签到完成签到,获得积分10
22秒前
共享精神应助jijiguo采纳,获得10
25秒前
甘楽完成签到,获得积分20
32秒前
25_1完成签到,获得积分10
32秒前
33秒前
34秒前
25_1发布了新的文献求助10
39秒前
芳华如梦发布了新的文献求助10
42秒前
Lynn完成签到,获得积分10
46秒前
风行域完成签到,获得积分10
46秒前
HOPKINSON发布了新的文献求助20
47秒前
章鱼完成签到,获得积分10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
丘比特应助科研通管家采纳,获得10
52秒前
赘婿应助科研通管家采纳,获得10
53秒前
共享精神应助科研通管家采纳,获得10
53秒前
无题完成签到,获得积分10
1分钟前
夜夏完成签到,获得积分10
1分钟前
摩天轮完成签到 ,获得积分10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
畅快怀寒完成签到 ,获得积分10
1分钟前
1分钟前
薛禾发布了新的文献求助10
1分钟前
乐乐应助芳华如梦采纳,获得10
1分钟前
1分钟前
breeze完成签到,获得积分10
1分钟前
merry6669完成签到 ,获得积分10
1分钟前
王璐璐完成签到,获得积分10
1分钟前
hhhm完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407659
求助须知:如何正确求助?哪些是违规求助? 4525171
关于积分的说明 14101365
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436551
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604