水溶液
碘化物
阳极
电化学
化学工程
氧化还原
催化作用
碘
阴极
电解质
化学
电极
无机化学
物理化学
有机化学
工程类
作者
Xueya Yang,Huiqing Fan,Fulong Hu,Shengmei Chen,Kang Yan,Longtao Ma
标识
DOI:10.1007/s40820-023-01093-7
摘要
Rechargeable aqueous zinc iodine (ZnǀǀI2) batteries have been promising energy storage technologies due to low-cost position and constitutional safety of zinc anode, iodine cathode and aqueous electrolytes. Whereas, on one hand, the low-fraction utilization of electrochemically inert host causes severe shuttle of soluble polyiodides, deficient iodine utilization and sluggish reaction kinetics. On the other hand, the usage of high mass polar electrocatalysts occupies mass and volume of electrode materials and sacrifices device-level energy density. Here, we propose a "confinement-catalysis" host composed of Fe single atom catalyst embedding inside ordered mesoporous carbon host, which can effectively confine and catalytically convert I2/I- couple and polyiodide intermediates. Consequently, the cathode enables the high capacity of 188.2 mAh g-1 at 0.3 A g-1, excellent rate capability with a capacity of 139.6 mAh g-1 delivered at high current density of 15 A g-1 and ultra-long cyclic stability over 50,000 cycles with 80.5% initial capacity retained under high iodine loading of 76.72 wt%. Furthermore, the electrocatalytic host can also accelerate the [Formula: see text] conversion. The greatly improved electrochemical performance originates from the modulation of physicochemical confinement and the decrease of energy barrier for reversible I-/I2 and I2/I+ couples, and polyiodide intermediates conversions.
科研通智能强力驱动
Strongly Powered by AbleSci AI