Artificial intelligence-quantified tumour-lymphocyte spatial interaction predicts disease-free survival in resected lung adenocarcinoma: A graph-based, multicentre study

危险系数 腺癌 医学 置信区间 内科学 淋巴细胞 肿瘤科 病理 癌症
作者
Zhengyun Feng,Huan Lin,Zaiyi Liu,Li‐Xu Yan,Yumeng Wang,Bingbing Li,Entao Liu,Chu Han,Zhenwei Shi,Cheng Lu,Zhenbing Liu,Cheng Pang,Zhenhui Li,Yanfen Cui,Xipeng Pan,Xin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:238: 107617-107617 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107617
摘要

A high degree of lymphocyte infiltration is related to superior outcomes amongst patients with lung adenocarcinoma. Recent evidence indicates that the spatial interactions between tumours and lymphocytes also influence the anti-tumour immune responses, but the spatial analysis at the cellular level remains insufficient. We proposed an artificial intelligence-quantified Tumour-Lymphocyte Spatial Interaction score (TLSI-score) by calculating the ratio between the number of spatial adjacent tumour-lymphocyte and the number of tumour cells based on topology cell graph constructed using H&E-stained whole-slide images. The association of TLSI-score with disease-free survival (DFS) was explored in 529 patients with lung adenocarcinoma across three independent cohorts (D1, 275; V1, 139; V2, 115). After adjusting for pTNM stage and other clinicopathologic risk factors, a higher TLSI-score was independently associated with longer DFS than a low TLSI-score in the three cohorts [D1, adjusted hazard ratio (HR), 0.674; 95% confidence interval (CI) 0.463–0.983; p = 0.040; V1, adjusted HR, 0.408; 95% CI 0.223–0.746; p = 0.004; V2, adjusted HR, 0.294; 95% CI 0.130–0.666; p = 0.003]. By integrating the TLSI-score with clinicopathologic risk factors, the integrated model (full model) improves the prediction of DFS in three independent cohorts (C-index, D1, 0.716 vs. 0.701; V1, 0.666 vs. 0.645; V2, 0.708 vs. 0.662) TLSI-score shows the second highest relative contribution to the prognostic prediction model, next to the pTNM stage. TLSI-score can assist in the characterising of tumour microenvironment and is expected to promote individualized treatment and follow-up decision-making in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
浩铭完成签到,获得积分10
1秒前
1秒前
2秒前
lsyt发布了新的文献求助50
2秒前
JiaJiaQing完成签到,获得积分10
3秒前
ding应助qq采纳,获得10
3秒前
大亮完成签到 ,获得积分10
3秒前
叮当的猫完成签到,获得积分10
3秒前
邰猫猫完成签到,获得积分20
4秒前
duckweedyan完成签到,获得积分10
5秒前
LIUjun完成签到,获得积分10
5秒前
5秒前
星辰大海应助justonce采纳,获得10
5秒前
CodeCraft应助yjzzz采纳,获得10
5秒前
你的风筝完成签到,获得积分10
5秒前
6秒前
逝月发布了新的文献求助200
6秒前
6秒前
WWWUBING发布了新的文献求助20
7秒前
玛琪玛小姐的狗完成签到,获得积分10
7秒前
JiaJiaQing发布了新的文献求助10
7秒前
风华完成签到,获得积分10
7秒前
zhangfan发布了新的文献求助10
8秒前
彦卿完成签到,获得积分10
8秒前
8秒前
du完成签到 ,获得积分10
8秒前
迟迟完成签到 ,获得积分10
9秒前
kndfsfmf完成签到,获得积分10
9秒前
哈哈发布了新的文献求助10
9秒前
JamesPei应助盛夏采纳,获得10
9秒前
wjjjj完成签到,获得积分20
10秒前
玲儿完成签到,获得积分10
10秒前
10秒前
linkman发布了新的文献求助10
11秒前
大气指甲油完成签到,获得积分10
11秒前
心心完成签到,获得积分10
11秒前
11秒前
魔法披风完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044