Prediction of pulse wave of target organ damage in hypertension based on multiple feature fusion

特征(语言学) 脉搏(音乐) 计算机科学 随机森林 人工智能 领域(数学分析) 排名(信息检索) 时域 模式识别(心理学) 医学 融合 机器学习 数学 计算机视觉 哲学 数学分析 探测器 电信 语言学
作者
Jingdong Yang,Shuchen Cai,Chenhao Qi,Tianxiao Xie,Haixia Yan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 105009-105009 被引量:2
标识
DOI:10.1016/j.bspc.2023.105009
摘要

With respect to less efficiency and low accuracy of predicting on hypertensive target organ damage, this article proposes a fusion prediction model combining pulse-taking with inquiry diagnosis of traditional Chinese medicine to accomplish the efficient and non-invasive diagnosis. Regarding the class imbalance of inquiry diagnosis samples, an Eliminated random forest algorithm is proposed to select efficient features and reduce the impact of class imbalance on classification performance via cluster-based under-sampling algorithm. As to low discriminability of hypertensive time-domain pulse wave samples, time-domain pulse wave is transformed to the frequency-domain MFCC feature maps, and fuse feature maps of inquiry diagnosis scale for predicting hypertension target organ damage. In the article, the clinical 608 cases of hypertensive target organ damage are from Longhua Hospital affiliated to Shanghai University of Chinese Medicine and Hospital of Integrated Traditional Chinese and Western Medicine concerning pulse-taking and inquiry diagnosis. The evaluation indicators of 5-Fold cross-validation classification, i.e. F1-score, Accuracy, Precision, Sensitivity, AUC, are 97.31%, 98.72%, 97.71%, 97.04%, 99.13% respectively, which are higher than those of the other typical models. In addition, this article also studies the correlation between classification of pulse-taking or inquiry diagnosis and its features, and analyzes the feature importance ranking on pulse-taking and inquiry diagnosis, which aids clinicians to seek the occurrence mechanisms of hypertensive target organ damage, and find the effective measurements for timely prevention and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZXW完成签到,获得积分10
刚刚
阿巴阿巴发布了新的文献求助10
刚刚
嘟哈克完成签到,获得积分10
刚刚
飞飞完成签到,获得积分10
1秒前
1秒前
平淡幻枫发布了新的文献求助10
1秒前
NexusExplorer应助mcqm采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
2秒前
young应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
快乐的小叮当完成签到,获得积分10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
愉快之槐应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
young应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
科研通AI2S应助WQY采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
徐徐完成签到,获得积分10
3秒前
CyrusSo524应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得30
3秒前
1sunpf完成签到,获得积分10
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051