Prediction of pulse wave of target organ damage in hypertension based on multiple feature fusion

特征(语言学) 脉搏(音乐) 计算机科学 随机森林 人工智能 领域(数学分析) 排名(信息检索) 时域 模式识别(心理学) 医学 融合 机器学习 数学 计算机视觉 电信 数学分析 哲学 语言学 探测器
作者
Jingdong Yang,Shuchen Cai,Chenhao Qi,Tianxiao Xie,Haixia Yan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 105009-105009 被引量:2
标识
DOI:10.1016/j.bspc.2023.105009
摘要

With respect to less efficiency and low accuracy of predicting on hypertensive target organ damage, this article proposes a fusion prediction model combining pulse-taking with inquiry diagnosis of traditional Chinese medicine to accomplish the efficient and non-invasive diagnosis. Regarding the class imbalance of inquiry diagnosis samples, an Eliminated random forest algorithm is proposed to select efficient features and reduce the impact of class imbalance on classification performance via cluster-based under-sampling algorithm. As to low discriminability of hypertensive time-domain pulse wave samples, time-domain pulse wave is transformed to the frequency-domain MFCC feature maps, and fuse feature maps of inquiry diagnosis scale for predicting hypertension target organ damage. In the article, the clinical 608 cases of hypertensive target organ damage are from Longhua Hospital affiliated to Shanghai University of Chinese Medicine and Hospital of Integrated Traditional Chinese and Western Medicine concerning pulse-taking and inquiry diagnosis. The evaluation indicators of 5-Fold cross-validation classification, i.e. F1-score, Accuracy, Precision, Sensitivity, AUC, are 97.31%, 98.72%, 97.71%, 97.04%, 99.13% respectively, which are higher than those of the other typical models. In addition, this article also studies the correlation between classification of pulse-taking or inquiry diagnosis and its features, and analyzes the feature importance ranking on pulse-taking and inquiry diagnosis, which aids clinicians to seek the occurrence mechanisms of hypertensive target organ damage, and find the effective measurements for timely prevention and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小白发布了新的文献求助10
刚刚
maoamo2024发布了新的文献求助10
1秒前
1秒前
mysci完成签到,获得积分10
1秒前
2秒前
高兴可乐完成签到,获得积分20
2秒前
enterdawn完成签到,获得积分10
2秒前
2秒前
D调的华丽完成签到,获得积分10
2秒前
陈思雨发布了新的文献求助10
2秒前
3秒前
Clare发布了新的文献求助10
4秒前
4秒前
咩咩完成签到,获得积分10
4秒前
5秒前
6秒前
Jerome完成签到,获得积分20
6秒前
6秒前
酷波er应助乐观文轩采纳,获得10
6秒前
标致雪碧发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
jiayu发布了新的文献求助30
10秒前
10秒前
11秒前
浮晨完成签到,获得积分10
12秒前
12秒前
bkagyin应助书生采纳,获得30
13秒前
Jerome发布了新的文献求助10
13秒前
13秒前
鲲鹏戏龙完成签到,获得积分10
13秒前
14秒前
杨佳莉发布了新的文献求助10
14秒前
fasdf应助Vivian采纳,获得10
14秒前
标致雪碧完成签到,获得积分10
14秒前
15秒前
geg关闭了geg文献求助
16秒前
16秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700164
关于积分的说明 14906941
捐赠科研通 4741703
什么是DOI,文献DOI怎么找? 2548025
邀请新用户注册赠送积分活动 1511771
关于科研通互助平台的介绍 1473781