Identification of attention deficit hyperactivity disorder with deep learning model

注意缺陷多动障碍 人工智能 线性判别分析 支持向量机 多窗口 脑电图 模式识别(心理学) 特征提取 计算机科学 机器学习 心理学 语音识别 精神科
作者
Ömer Kasım
出处
期刊:Physical and Engineering Sciences in Medicine [Springer Nature]
卷期号:46 (3): 1081-1090 被引量:4
标识
DOI:10.1007/s13246-023-01275-y
摘要

This article explores the detection of Attention Deficit Hyperactivity Disorder, a neurobehavioral disorder, from electroencephalography signals. Due to the unstable behavior of electroencephalography signals caused by complex neuronal activity in the brain, frequency analysis methods are required to extract the hidden patterns. In this study, the feature extraction was performed with the Multitaper and Multivariate Variational Mode Decomposition methods. Then, these features were analyzed with the neighborhood component analysis and the features that contribute effectively to the classification were selected. The deep learning model including the convolution, pooling, and bidirectional long short term cell and fully connected layer was trained with the selected features. The trained model could effectively classify the subjects with Attention Deficit Hyperactivity Disorder with a deep learning model, support vector machines and linear discriminant analysis. The experiments were validated with an Attention Deficit Hyperactivity Disorder open access dataset ( https://doi.org/10.21227/rzfh-zn36 ). In validation, the deep learning model was able to classify 1210 test samples (600 subjects in the control group as Normal and 610 subjects in the ADHD group as ADHD) in 0.1 s with an accuracy of 95.54%. This accuracy rate is quite high compared to the Linear Discriminant Analysis (76.38%) and Support Vector Machines (81.69%). Experimental results showed that the proposed approach can innovatively classify Attention Deficit Hyperactivity Disorder subjects from the Control group effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐发布了新的文献求助10
1秒前
1秒前
2秒前
马子完成签到,获得积分10
2秒前
2秒前
汉堡包应助ww采纳,获得10
3秒前
3秒前
清脆的土豆应助不安寄容采纳,获得10
3秒前
maolizi发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
5秒前
李依伊发布了新的文献求助10
5秒前
5秒前
Jambo发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
ssx发布了新的文献求助10
8秒前
Jimmy_King发布了新的文献求助10
8秒前
36456657应助酒在远方采纳,获得10
9秒前
10秒前
嗨JL发布了新的文献求助10
10秒前
淡淡无春完成签到,获得积分20
11秒前
季宇发布了新的文献求助10
11秒前
noobmaster发布了新的文献求助10
11秒前
Hello应助cindy采纳,获得30
12秒前
智勇双全发布了新的文献求助10
12秒前
12秒前
钱钱钱完成签到,获得积分10
12秒前
无花果应助LSQ采纳,获得10
12秒前
13秒前
希望天下0贩的0应助微风采纳,获得10
13秒前
小老板完成签到,获得积分10
13秒前
李爱国应助李依伊采纳,获得10
14秒前
14秒前
14秒前
英俊的铭应助Jambo采纳,获得10
15秒前
宝海青发布了新的文献求助10
15秒前
ricardo完成签到,获得积分10
16秒前
红尘发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309340
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510349
捐赠科研通 2617829
什么是DOI,文献DOI怎么找? 1430504
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649319