An automatic classifier for monitoring applied behaviors of cage-free laying hens with deep learning

笼子 沐浴 铺设 鲈鱼 计算机科学 数学 医学 生物 渔业 天文 组合数学 物理 病理
作者
Xiao Yang,Ramesh Bahadur Bist,Sachin Subedi,Zihao Wu,Tianming Liu,Lilong Chai
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106377-106377 被引量:4
标识
DOI:10.1016/j.engappai.2023.106377
摘要

Poultry behavior is an important indicator of their welfare, health, and production performance. The welfare of layers and broilers such as walking ability, breast blisters, hock burn, and heart failures are measurable through behavior monitoring. In the previous research, most of laying hen studies focused on basic behaviors such as drinking, feeding, and walking of broilers. However, with the transition to the cage-free houses, more natural behaviors need to be monitored for welfare assessment. In this study, a six-behavioral classifier (i.e., feeding, drinking, walking, perch, dust bathing, and nesting) was developed based on multiple CNN models (e.g., efficientNetV2 and YOLOv5-cls). The classifier is one of the first model included perching, dust bathing, and nesting behaviors, which are special characters that reflect basic welfare of cage-free birds. Furthermore, a cage-free birds’ dataset containing 12,000 pictures was collected and annotated in a lifespan scale (e.g., from 1 week to 50 weeks of old), from which 9,600 images were used as training dataset and the rest were used for validation. The best performance model YOLOv5-cls-m achieved an average accuracy of 95.3%, which is 5.01% higher than that of efficientNetV2-l. Drinking behavior of chicks was monitored with the highest accuracy (97.8%) while nesting behavior had a detection precision of 92.5%. In terms of chickens’ age, the classifier has a better accuracy for smaller chicks (< 10 days) than larger chickens older than 10 days (96.4% vs 94.3%). The results show that the classifier is a useful tool to segregate cage-free bird behaviors in various life periods and environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小公完成签到,获得积分10
1秒前
深情安青应助elsalili采纳,获得10
2秒前
魔幻的旋蒸完成签到,获得积分10
2秒前
2秒前
笨笨秋白完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
一二完成签到 ,获得积分10
5秒前
群山完成签到 ,获得积分10
6秒前
6秒前
啦啦啦完成签到 ,获得积分10
6秒前
完美世界应助luyang采纳,获得10
6秒前
Shaw发布了新的文献求助30
7秒前
穆奕完成签到 ,获得积分10
7秒前
7秒前
7秒前
陈嘻嘻嘻嘻完成签到,获得积分10
8秒前
欧欧欧导发布了新的文献求助10
8秒前
8秒前
勇往直前完成签到,获得积分10
8秒前
Tian完成签到 ,获得积分10
9秒前
愉快的映之完成签到 ,获得积分10
9秒前
10秒前
10秒前
Chen完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
Alone离殇完成签到 ,获得积分10
13秒前
13秒前
enen发布了新的文献求助10
13秒前
要减肥的冰姬应助wgcheng采纳,获得10
14秒前
俏皮火完成签到 ,获得积分10
14秒前
14秒前
一只老呆猪给小菜张的求助进行了留言
14秒前
15秒前
北过完成签到,获得积分10
15秒前
云瑾应助狂野大雄鹰采纳,获得10
16秒前
cindy发布了新的文献求助10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792