An automatic classifier for monitoring applied behaviors of cage-free laying hens with deep learning

笼子 沐浴 铺设 计算机科学 机器学习 统计 数学 医学 天文 组合数学 物理 病理
作者
Xiao Yang,Ramesh Bahadur Bist,Sachin Subedi,Zihao Wu,Tianming Liu,Lilong Chai
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106377-106377 被引量:24
标识
DOI:10.1016/j.engappai.2023.106377
摘要

Poultry behavior is an important indicator of their welfare, health, and production performance. The welfare of layers and broilers such as walking ability, breast blisters, hock burn, and heart failures are measurable through behavior monitoring. In the previous research, most of laying hen studies focused on basic behaviors such as drinking, feeding, and walking of broilers. However, with the transition to the cage-free houses, more natural behaviors need to be monitored for welfare assessment. In this study, a six-behavioral classifier (i.e., feeding, drinking, walking, perch, dust bathing, and nesting) was developed based on multiple CNN models (e.g., efficientNetV2 and YOLOv5-cls). The classifier is one of the first model included perching, dust bathing, and nesting behaviors, which are special characters that reflect basic welfare of cage-free birds. Furthermore, a cage-free birds’ dataset containing 12,000 pictures was collected and annotated in a lifespan scale (e.g., from 1 week to 50 weeks of old), from which 9,600 images were used as training dataset and the rest were used for validation. The best performance model YOLOv5-cls-m achieved an average accuracy of 95.3%, which is 5.01% higher than that of efficientNetV2-l. Drinking behavior of chicks was monitored with the highest accuracy (97.8%) while nesting behavior had a detection precision of 92.5%. In terms of chickens’ age, the classifier has a better accuracy for smaller chicks (< 10 days) than larger chickens older than 10 days (96.4% vs 94.3%). The results show that the classifier is a useful tool to segregate cage-free bird behaviors in various life periods and environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuuuuu完成签到,获得积分10
刚刚
大模型应助LR采纳,获得10
刚刚
过于傻逼完成签到,获得积分10
1秒前
突突兔完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
猪猪hero应助山影流霞采纳,获得10
2秒前
wangmou完成签到,获得积分10
2秒前
:P完成签到,获得积分10
3秒前
3秒前
微微发布了新的文献求助10
3秒前
肖战战完成签到 ,获得积分10
3秒前
douzi完成签到,获得积分10
4秒前
4秒前
4秒前
Bryan应助林狗采纳,获得10
4秒前
汉堡包应助王博林采纳,获得10
4秒前
goldenfleece完成签到,获得积分10
4秒前
ye发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
健忘的幼晴完成签到,获得积分10
5秒前
檀熹完成签到,获得积分10
5秒前
5秒前
海豚发布了新的文献求助10
6秒前
6秒前
毛毛完成签到,获得积分20
6秒前
华仔应助邹长飞采纳,获得10
6秒前
白斯特发布了新的文献求助10
6秒前
6秒前
张雷应助:P采纳,获得20
6秒前
苹果的苹发布了新的文献求助10
7秒前
无昵称发布了新的文献求助10
7秒前
隐形曼青应助Drgao0606采纳,获得10
7秒前
Leexxxhaoo完成签到,获得积分10
8秒前
8秒前
恍恍惚惚发布了新的文献求助10
8秒前
lhnee发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968964
求助须知:如何正确求助?哪些是违规求助? 3513877
关于积分的说明 11170569
捐赠科研通 3249201
什么是DOI,文献DOI怎么找? 1794692
邀请新用户注册赠送积分活动 875297
科研通“疑难数据库(出版商)”最低求助积分说明 804755