An automatic classifier for monitoring applied behaviors of cage-free laying hens with deep learning

笼子 沐浴 铺设 计算机科学 机器学习 统计 数学 医学 天文 组合数学 物理 病理
作者
Xiao Yang,Ramesh Bahadur Bist,Sachin Subedi,Zihao Wu,Tianming Liu,Lilong Chai
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106377-106377 被引量:24
标识
DOI:10.1016/j.engappai.2023.106377
摘要

Poultry behavior is an important indicator of their welfare, health, and production performance. The welfare of layers and broilers such as walking ability, breast blisters, hock burn, and heart failures are measurable through behavior monitoring. In the previous research, most of laying hen studies focused on basic behaviors such as drinking, feeding, and walking of broilers. However, with the transition to the cage-free houses, more natural behaviors need to be monitored for welfare assessment. In this study, a six-behavioral classifier (i.e., feeding, drinking, walking, perch, dust bathing, and nesting) was developed based on multiple CNN models (e.g., efficientNetV2 and YOLOv5-cls). The classifier is one of the first model included perching, dust bathing, and nesting behaviors, which are special characters that reflect basic welfare of cage-free birds. Furthermore, a cage-free birds’ dataset containing 12,000 pictures was collected and annotated in a lifespan scale (e.g., from 1 week to 50 weeks of old), from which 9,600 images were used as training dataset and the rest were used for validation. The best performance model YOLOv5-cls-m achieved an average accuracy of 95.3%, which is 5.01% higher than that of efficientNetV2-l. Drinking behavior of chicks was monitored with the highest accuracy (97.8%) while nesting behavior had a detection precision of 92.5%. In terms of chickens’ age, the classifier has a better accuracy for smaller chicks (< 10 days) than larger chickens older than 10 days (96.4% vs 94.3%). The results show that the classifier is a useful tool to segregate cage-free bird behaviors in various life periods and environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyx完成签到,获得积分10
刚刚
甜甜玫瑰发布了新的文献求助10
1秒前
SciGPT应助宋宋采纳,获得10
1秒前
帕荣荣发布了新的文献求助10
1秒前
ZLY发布了新的文献求助10
2秒前
2秒前
huhu发布了新的文献求助10
3秒前
852应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
李爱国应助小韩采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
icee发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Rondab应助帕荣荣采纳,获得10
9秒前
liang发布了新的文献求助10
10秒前
完美世界应助FunHigh采纳,获得10
10秒前
星辰大海应助澡雪采纳,获得10
10秒前
鲸鱼打滚发布了新的文献求助10
11秒前
11秒前
啊啊发布了新的文献求助10
11秒前
科目三应助逝水无痕采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975814
求助须知:如何正确求助?哪些是违规求助? 3520123
关于积分的说明 11201020
捐赠科研通 3256502
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877523
科研通“疑难数据库(出版商)”最低求助积分说明 806417