An automatic classifier for monitoring applied behaviors of cage-free laying hens with deep learning

笼子 沐浴 铺设 计算机科学 机器学习 统计 数学 医学 天文 组合数学 物理 病理
作者
Xiao Yang,Ramesh Bahadur Bist,Sachin Subedi,Zihao Wu,Tianming Liu,Lilong Chai
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106377-106377 被引量:34
标识
DOI:10.1016/j.engappai.2023.106377
摘要

Poultry behavior is an important indicator of their welfare, health, and production performance. The welfare of layers and broilers such as walking ability, breast blisters, hock burn, and heart failures are measurable through behavior monitoring. In the previous research, most of laying hen studies focused on basic behaviors such as drinking, feeding, and walking of broilers. However, with the transition to the cage-free houses, more natural behaviors need to be monitored for welfare assessment. In this study, a six-behavioral classifier (i.e., feeding, drinking, walking, perch, dust bathing, and nesting) was developed based on multiple CNN models (e.g., efficientNetV2 and YOLOv5-cls). The classifier is one of the first model included perching, dust bathing, and nesting behaviors, which are special characters that reflect basic welfare of cage-free birds. Furthermore, a cage-free birds’ dataset containing 12,000 pictures was collected and annotated in a lifespan scale (e.g., from 1 week to 50 weeks of old), from which 9,600 images were used as training dataset and the rest were used for validation. The best performance model YOLOv5-cls-m achieved an average accuracy of 95.3%, which is 5.01% higher than that of efficientNetV2-l. Drinking behavior of chicks was monitored with the highest accuracy (97.8%) while nesting behavior had a detection precision of 92.5%. In terms of chickens’ age, the classifier has a better accuracy for smaller chicks (< 10 days) than larger chickens older than 10 days (96.4% vs 94.3%). The results show that the classifier is a useful tool to segregate cage-free bird behaviors in various life periods and environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
成就的沛菡完成签到 ,获得积分10
6秒前
zxy应助唐泽雪穗采纳,获得30
6秒前
Tysonqu完成签到,获得积分10
8秒前
sci_zt完成签到 ,获得积分10
8秒前
9秒前
易止完成签到 ,获得积分10
9秒前
欢呼的茗茗完成签到 ,获得积分10
10秒前
方方完成签到 ,获得积分10
10秒前
10秒前
丰富的慕卉完成签到,获得积分10
12秒前
孙晓燕完成签到 ,获得积分10
15秒前
19秒前
唐泽雪穗发布了新的文献求助30
19秒前
xczhu完成签到,获得积分0
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
Wayne完成签到 ,获得积分10
24秒前
忐忑的中心完成签到 ,获得积分10
25秒前
红糖订书机完成签到 ,获得积分10
30秒前
DD完成签到,获得积分10
30秒前
Lucas应助JUAN采纳,获得10
33秒前
量子星尘发布了新的文献求助10
34秒前
娜娜完成签到 ,获得积分10
34秒前
YHBBZ完成签到 ,获得积分10
34秒前
窝窝头完成签到 ,获得积分10
39秒前
CipherSage应助lin采纳,获得10
43秒前
zhangj696完成签到,获得积分10
43秒前
JUAN完成签到,获得积分10
45秒前
yinyin完成签到 ,获得积分10
45秒前
现代期待完成签到,获得积分10
46秒前
50秒前
握瑾怀瑜完成签到 ,获得积分0
50秒前
weng完成签到,获得积分10
51秒前
wxh完成签到 ,获得积分10
56秒前
uouuo完成签到 ,获得积分10
58秒前
羊白玉完成签到 ,获得积分0
59秒前
缥缈的觅风完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
apt完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066726
求助须知:如何正确求助?哪些是违规求助? 4288676
关于积分的说明 13360388
捐赠科研通 4108050
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254924
关于科研通互助平台的介绍 1187333