An automatic classifier for monitoring applied behaviors of cage-free laying hens with deep learning

笼子 沐浴 铺设 计算机科学 机器学习 统计 数学 医学 天文 组合数学 物理 病理
作者
Xiao Yang,Ramesh Bahadur Bist,Sachin Subedi,Zihao Wu,Tianming Liu,Lilong Chai
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106377-106377 被引量:24
标识
DOI:10.1016/j.engappai.2023.106377
摘要

Poultry behavior is an important indicator of their welfare, health, and production performance. The welfare of layers and broilers such as walking ability, breast blisters, hock burn, and heart failures are measurable through behavior monitoring. In the previous research, most of laying hen studies focused on basic behaviors such as drinking, feeding, and walking of broilers. However, with the transition to the cage-free houses, more natural behaviors need to be monitored for welfare assessment. In this study, a six-behavioral classifier (i.e., feeding, drinking, walking, perch, dust bathing, and nesting) was developed based on multiple CNN models (e.g., efficientNetV2 and YOLOv5-cls). The classifier is one of the first model included perching, dust bathing, and nesting behaviors, which are special characters that reflect basic welfare of cage-free birds. Furthermore, a cage-free birds’ dataset containing 12,000 pictures was collected and annotated in a lifespan scale (e.g., from 1 week to 50 weeks of old), from which 9,600 images were used as training dataset and the rest were used for validation. The best performance model YOLOv5-cls-m achieved an average accuracy of 95.3%, which is 5.01% higher than that of efficientNetV2-l. Drinking behavior of chicks was monitored with the highest accuracy (97.8%) while nesting behavior had a detection precision of 92.5%. In terms of chickens’ age, the classifier has a better accuracy for smaller chicks (< 10 days) than larger chickens older than 10 days (96.4% vs 94.3%). The results show that the classifier is a useful tool to segregate cage-free bird behaviors in various life periods and environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小小飞完成签到,获得积分10
1秒前
2秒前
hello完成签到,获得积分10
2秒前
我是老大应助无情的幻嫣采纳,获得10
2秒前
Roman完成签到,获得积分10
3秒前
slin_sjtu发布了新的文献求助10
5秒前
周周发布了新的文献求助20
5秒前
小党完成签到,获得积分10
5秒前
6秒前
昏睡的白桃完成签到,获得积分10
6秒前
小宇OvO发布了新的文献求助10
7秒前
jiaolulu发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
真的不想干活了完成签到,获得积分10
11秒前
美丽的依琴完成签到,获得积分10
12秒前
Xin完成签到,获得积分10
18秒前
Aurora.H完成签到,获得积分10
21秒前
21秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
duckspy发布了新的文献求助10
24秒前
24秒前
24秒前
xiaowan完成签到,获得积分10
25秒前
Terry完成签到,获得积分10
26秒前
张张张哈哈哈完成签到,获得积分10
26秒前
Research完成签到 ,获得积分10
26秒前
称心采枫完成签到 ,获得积分0
27秒前
27秒前
新新新新新发顶刊完成签到 ,获得积分10
28秒前
L3完成签到,获得积分10
29秒前
我是科研小能手完成签到,获得积分10
29秒前
风中的小丸子完成签到,获得积分10
30秒前
30秒前
时尚俊驰发布了新的文献求助10
31秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022