Noninvasive Human Ballistocardiography Assessment Based on Deep Learning

循环神经网络 心脏超声心动图 计算机科学 自回归模型 深度学习 人工智能 卷积神经网络 序列(生物学) 人工神经网络 信号(编程语言) 机器学习 模式识别(心理学) 医学 内科学 计量经济学 生物 经济 程序设计语言 遗传学
作者
Qing Wang,Weimin Lyu,Shuyang Chen,Changyuan Yu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (12): 13702-13710 被引量:3
标识
DOI:10.1109/jsen.2023.3272646
摘要

Ballistocardiography (BCG) is a vibration signal of human cardiac activity, which can be obtained by an optical fiber sensor (OFS) in a noninvasive way. The proposed OFS, as a low power consumption, noncontact, noninvasive real-time health monitoring instrument, has been developed into an effective health care monitoring method. However, when people need to monitor BCG for a long time, a large number of BCG data needs to be collected, which is time-consuming, costly, and labor-intensive. To solve this problem, in this article, we proposed a novel deep learning model, termed BCGNET. First, a convolutional neural network (CNN) is used to extract the short-term dependence between multivariate loads. Then, the recurrent neural network (RNN) model is used to capture the long-term dependence of load sequence, and the ultra-long-term repetitive pattern of load sequence is fully studied by using the long-short term memory (LSTM) network with a recurrent skip. Finally, the autoregressive layer and full connection layer are used for combined prediction. Extensive experimental results demonstrate the superiority of BCGNET; the accuracy is 91.43% achieved by the proposed BCGNET compared with CNN (89.61%), RNN (89.88%) and multihead attention network (MHA-Net) (90.22%), and also show the proposed model has good performance in BCG prediction and assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FUTURE发布了新的文献求助10
1秒前
1秒前
shinn发布了新的文献求助10
1秒前
2秒前
西北孤傲的狼完成签到,获得积分10
2秒前
深情安青应助N型半导体采纳,获得10
2秒前
恋雅颖月发布了新的文献求助10
4秒前
逗小妹发布了新的文献求助10
6秒前
6秒前
若邻发布了新的文献求助10
6秒前
坚强的纸飞机完成签到,获得积分10
7秒前
7秒前
帅哥发布了新的文献求助10
9秒前
evil发布了新的文献求助10
12秒前
熊熊发布了新的文献求助10
12秒前
科研通AI2S应助大力猫崽采纳,获得10
13秒前
在水一方应助qq采纳,获得10
13秒前
搬砖完成签到,获得积分20
13秒前
13秒前
15秒前
葱葱不吃葱完成签到 ,获得积分10
16秒前
丘比特应助臻灏采纳,获得10
17秒前
18秒前
18秒前
19秒前
19秒前
19秒前
坚强跳跳糖完成签到,获得积分10
19秒前
大个应助evil采纳,获得10
20秒前
goufufu发布了新的文献求助20
20秒前
yanyanqin发布了新的文献求助10
21秒前
xioaru发布了新的文献求助10
23秒前
Jasper应助巴斯光年采纳,获得10
23秒前
23秒前
ATOM发布了新的文献求助10
24秒前
潇洒发布了新的文献求助10
24秒前
cowboy123发布了新的文献求助10
25秒前
xioaru完成签到,获得积分20
28秒前
28秒前
yanyanqin完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303