免疫系统
类风湿性关节炎
医学
关节炎
基因敲除
免疫学
免疫组织化学
癌症研究
内科学
生物
细胞凋亡
生物化学
作者
Di Liu,Yu Kuang,Simin Chen,Ruiru Li,Fan Su,Shuoyang Zhang,Qian Qiu,Shuibin Lin,Chuyu Shen,Yingli Liu,Liuqin Liang,Jingnan Wang,Hanshi Xu,Youjun Xiao
标识
DOI:10.1136/ard-2023-225343
摘要
Objective Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). Methods FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. Results We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. Conclusion Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI