亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Vision Transformer Network With Wavelet-Based Features for Breast Ultrasound Classification

乳腺癌 分类 乳腺超声检查 计算机科学 人工智能 小波 人工神经网络 模式识别(心理学) 机器学习 深度学习 医学 癌症 乳腺摄影术 内科学
作者
Chenyang He,Yan Diao,Xingcong Ma,Shuo Yu,Xin He,Guochao Mao,Xinyu Wei,Yu Zhang,Yang Zhao
出处
期刊:Image Analysis & Stereology [Slovenian Society for Stereology and Quantitative Image Analysis]
卷期号:43 (2): 185-194 被引量:5
标识
DOI:10.5566/ias.3116
摘要

Breast cancer is a prominent contributor to mortality associated with cancer in the female population on a global scale. The timely identification and precise categorization of breast cancer are of utmost importance in enhancing patient prognosis. Nevertheless, the task of precisely categorizing breast cancer based on ultrasound imaging continues to present difficulties, primarily due to the presence of dense breast tissues and their inherent heterogeneity. This study presents a unique approach for breast cancer categorization utilizing the wavelet based vision transformer network. To enhance the neural network’s receptive fields, we have incorporated the discrete wavelet transform (DWT) into the network input. This technique enables the capture of significant features in the frequency domain. The proposed model exhibits the capability to effectively capture intricate characteristics of breast tissue, hence enabling correct classification of breast cancer with a notable degree of precision and efficiency. We utilized two breast tumor ultrasound datasets, including 780 cases from Baheya hospital in Egypt and 267 patients from the UDIAT Diagnostic Centre of Sabadell in Spain. The findings of our study indicate that the proposed transformer network achieves exceptional performance in breast cancerclassification. With an AUC rate of 0.984 and 0.968 on both datasets, our approach surpasses conventional deep learning techniques, establishing itself as the leading method in this domain. This study signifies a noteworthy advancement in the diagnosis and categorization of breast cancer, showcasing the potential of the proposed transformer networks to enhance the efficacy of medical imaging analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚街听风完成签到 ,获得积分10
3秒前
zho发布了新的文献求助10
11秒前
黄青青完成签到,获得积分10
31秒前
46秒前
Ava应助sy采纳,获得10
47秒前
11111发布了新的文献求助10
49秒前
53秒前
55秒前
58秒前
59秒前
sy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
超级梦寒发布了新的文献求助10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
rengar完成签到,获得积分10
1分钟前
zhao123123完成签到,获得积分10
1分钟前
1分钟前
1分钟前
11111完成签到 ,获得积分10
1分钟前
qtmxxx完成签到,获得积分10
2分钟前
2分钟前
超级梦寒完成签到,获得积分10
2分钟前
Yantuobio完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小二郎应助zkexuan采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得50
3分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
3分钟前
zkexuan发布了新的文献求助10
3分钟前
笨笨的怜雪完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671164
求助须知:如何正确求助?哪些是违规求助? 4911080
关于积分的说明 15134143
捐赠科研通 4829913
什么是DOI,文献DOI怎么找? 2586540
邀请新用户注册赠送积分活动 1540184
关于科研通互助平台的介绍 1498370