已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Vision Transformer Network With Wavelet-Based Features for Breast Ultrasound Classification

乳腺癌 分类 乳腺超声检查 计算机科学 人工智能 小波 人工神经网络 模式识别(心理学) 机器学习 深度学习 医学 癌症 乳腺摄影术 内科学
作者
Chenyang He,Yan Diao,Xingcong Ma,Shuo Yu,Xin He,Guochao Mao,Xinyu Wei,Yu Zhang,Yang Zhao
出处
期刊:Image Analysis & Stereology [Slovenian Society for Stereology and Quantitative Image Analysis]
卷期号:43 (2): 185-194 被引量:5
标识
DOI:10.5566/ias.3116
摘要

Breast cancer is a prominent contributor to mortality associated with cancer in the female population on a global scale. The timely identification and precise categorization of breast cancer are of utmost importance in enhancing patient prognosis. Nevertheless, the task of precisely categorizing breast cancer based on ultrasound imaging continues to present difficulties, primarily due to the presence of dense breast tissues and their inherent heterogeneity. This study presents a unique approach for breast cancer categorization utilizing the wavelet based vision transformer network. To enhance the neural network’s receptive fields, we have incorporated the discrete wavelet transform (DWT) into the network input. This technique enables the capture of significant features in the frequency domain. The proposed model exhibits the capability to effectively capture intricate characteristics of breast tissue, hence enabling correct classification of breast cancer with a notable degree of precision and efficiency. We utilized two breast tumor ultrasound datasets, including 780 cases from Baheya hospital in Egypt and 267 patients from the UDIAT Diagnostic Centre of Sabadell in Spain. The findings of our study indicate that the proposed transformer network achieves exceptional performance in breast cancerclassification. With an AUC rate of 0.984 and 0.968 on both datasets, our approach surpasses conventional deep learning techniques, establishing itself as the leading method in this domain. This study signifies a noteworthy advancement in the diagnosis and categorization of breast cancer, showcasing the potential of the proposed transformer networks to enhance the efficacy of medical imaging analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫泾完成签到,获得积分10
刚刚
半。。发布了新的文献求助10
3秒前
锅包又完成签到 ,获得积分10
3秒前
3秒前
4秒前
lanxinyue发布了新的文献求助10
4秒前
科研通AI6应助不朽采纳,获得10
5秒前
善学以致用应助seventhcat采纳,获得10
6秒前
小灯发布了新的文献求助10
10秒前
chen测给jj的求助进行了留言
12秒前
瓜瓜蛙完成签到,获得积分20
12秒前
琳666发布了新的文献求助30
13秒前
烟花应助红豆子采纳,获得10
13秒前
合适的白筠完成签到,获得积分10
13秒前
14秒前
16秒前
meng发布了新的文献求助20
17秒前
17秒前
20秒前
Ellen发布了新的文献求助10
20秒前
seventhcat发布了新的文献求助10
21秒前
无情的数据线完成签到,获得积分10
21秒前
22秒前
桐桐应助buhuidanhuixue采纳,获得10
22秒前
昏睡小吕发布了新的文献求助10
24秒前
25秒前
李爱国应助在木星采纳,获得10
26秒前
西格玛发布了新的文献求助10
26秒前
Criminology34发布了新的文献求助300
28秒前
28秒前
科研通AI6应助lanxinyue采纳,获得10
28秒前
cheng发布了新的文献求助10
29秒前
破伤风发布了新的文献求助10
30秒前
31秒前
31秒前
林白发布了新的文献求助10
32秒前
34秒前
35秒前
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644032
求助须知:如何正确求助?哪些是违规求助? 4762682
关于积分的说明 15023283
捐赠科研通 4802257
什么是DOI,文献DOI怎么找? 2567397
邀请新用户注册赠送积分活动 1525099
关于科研通互助平台的介绍 1484620