A Vision Transformer Network With Wavelet-Based Features for Breast Ultrasound Classification

乳腺癌 分类 乳腺超声检查 计算机科学 人工智能 小波 人工神经网络 模式识别(心理学) 机器学习 深度学习 医学 癌症 乳腺摄影术 内科学
作者
Chenyang He,Yan Diao,Xingcong Ma,Shuo Yu,Xin He,Guochao Mao,Xinyu Wei,Yu Zhang,Yang Zhao
出处
期刊:Image Analysis & Stereology [Slovenian Society for Stereology and Quantitative Image Analysis]
卷期号:43 (2): 185-194 被引量:1
标识
DOI:10.5566/ias.3116
摘要

Breast cancer is a prominent contributor to mortality associated with cancer in the female population on a global scale. The timely identification and precise categorization of breast cancer are of utmost importance in enhancing patient prognosis. Nevertheless, the task of precisely categorizing breast cancer based on ultrasound imaging continues to present difficulties, primarily due to the presence of dense breast tissues and their inherent heterogeneity. This study presents a unique approach for breast cancer categorization utilizing the wavelet based vision transformer network. To enhance the neural network’s receptive fields, we have incorporated the discrete wavelet transform (DWT) into the network input. This technique enables the capture of significant features in the frequency domain. The proposed model exhibits the capability to effectively capture intricate characteristics of breast tissue, hence enabling correct classification of breast cancer with a notable degree of precision and efficiency. We utilized two breast tumor ultrasound datasets, including 780 cases from Baheya hospital in Egypt and 267 patients from the UDIAT Diagnostic Centre of Sabadell in Spain. The findings of our study indicate that the proposed transformer network achieves exceptional performance in breast cancerclassification. With an AUC rate of 0.984 and 0.968 on both datasets, our approach surpasses conventional deep learning techniques, establishing itself as the leading method in this domain. This study signifies a noteworthy advancement in the diagnosis and categorization of breast cancer, showcasing the potential of the proposed transformer networks to enhance the efficacy of medical imaging analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jj发布了新的文献求助10
1秒前
2秒前
aikeyan发布了新的文献求助10
2秒前
雪儿发布了新的文献求助10
2秒前
共享精神应助lihaifeng采纳,获得10
3秒前
斯文败类应助MDW采纳,获得10
3秒前
小马甲应助婷婷小笑采纳,获得10
3秒前
ikun完成签到,获得积分10
4秒前
舒心白山发布了新的文献求助10
4秒前
4秒前
5秒前
unaive完成签到,获得积分10
6秒前
lxiaok完成签到,获得积分10
7秒前
7秒前
7秒前
成就鲂完成签到,获得积分10
7秒前
8秒前
斯文败类应助嗯qq采纳,获得10
8秒前
可爱的函函应助小智采纳,获得10
9秒前
Mat完成签到,获得积分10
9秒前
EZ完成签到 ,获得积分10
10秒前
林佳一完成签到,获得积分10
10秒前
lihaifeng发布了新的文献求助10
11秒前
风-FBDD发布了新的文献求助10
11秒前
bio-tang发布了新的文献求助10
12秒前
12秒前
卡卡西完成签到,获得积分0
13秒前
13秒前
默默问晴发布了新的文献求助10
14秒前
嗯qq完成签到,获得积分10
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
march完成签到,获得积分20
18秒前
张小星发布了新的文献求助10
18秒前
19秒前
嗯qq发布了新的文献求助10
19秒前
王京华发布了新的文献求助10
20秒前
21秒前
张小星完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951130
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082541
捐赠科研通 3226963
什么是DOI,文献DOI怎么找? 1784094
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801089