A Vision Transformer Network With Wavelet-Based Features for Breast Ultrasound Classification

乳腺癌 分类 乳腺超声检查 计算机科学 人工智能 小波 人工神经网络 模式识别(心理学) 机器学习 深度学习 医学 癌症 乳腺摄影术 内科学
作者
Chenyang He,Yan Diao,Xingcong Ma,Shuo Yu,Xin He,Guochao Mao,Xinyu Wei,Yu Zhang,Yang Zhao
出处
期刊:Image Analysis & Stereology [Slovenian Society for Stereology and Quantitative Image Analysis]
卷期号:43 (2): 185-194 被引量:1
标识
DOI:10.5566/ias.3116
摘要

Breast cancer is a prominent contributor to mortality associated with cancer in the female population on a global scale. The timely identification and precise categorization of breast cancer are of utmost importance in enhancing patient prognosis. Nevertheless, the task of precisely categorizing breast cancer based on ultrasound imaging continues to present difficulties, primarily due to the presence of dense breast tissues and their inherent heterogeneity. This study presents a unique approach for breast cancer categorization utilizing the wavelet based vision transformer network. To enhance the neural network’s receptive fields, we have incorporated the discrete wavelet transform (DWT) into the network input. This technique enables the capture of significant features in the frequency domain. The proposed model exhibits the capability to effectively capture intricate characteristics of breast tissue, hence enabling correct classification of breast cancer with a notable degree of precision and efficiency. We utilized two breast tumor ultrasound datasets, including 780 cases from Baheya hospital in Egypt and 267 patients from the UDIAT Diagnostic Centre of Sabadell in Spain. The findings of our study indicate that the proposed transformer network achieves exceptional performance in breast cancerclassification. With an AUC rate of 0.984 and 0.968 on both datasets, our approach surpasses conventional deep learning techniques, establishing itself as the leading method in this domain. This study signifies a noteworthy advancement in the diagnosis and categorization of breast cancer, showcasing the potential of the proposed transformer networks to enhance the efficacy of medical imaging analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JasperChan完成签到,获得积分10
刚刚
无奈的鹤完成签到,获得积分10
1秒前
Jesenia发布了新的文献求助10
2秒前
3秒前
玉米发布了新的文献求助10
3秒前
凌小兔完成签到,获得积分10
4秒前
奋斗的杰发布了新的文献求助10
4秒前
英俊的铭应助活力的难摧采纳,获得10
5秒前
6秒前
xy发布了新的文献求助10
6秒前
24完成签到,获得积分10
7秒前
Akim应助XXF采纳,获得10
7秒前
8秒前
啦啦完成签到,获得积分10
9秒前
Cape发布了新的文献求助30
10秒前
派大星完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
万能图书馆应助斯丹康采纳,获得10
13秒前
细心的山槐完成签到,获得积分20
13秒前
14秒前
Crazy_Runner发布了新的文献求助10
14秒前
芒果发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
17秒前
wysiii发布了新的文献求助10
18秒前
求学得识完成签到 ,获得积分10
19秒前
XXF发布了新的文献求助10
19秒前
19秒前
王恩廷完成签到,获得积分10
20秒前
20秒前
igle驳回了Owen应助
20秒前
21秒前
22秒前
22秒前
852应助派大星采纳,获得10
23秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289559
求助须知:如何正确求助?哪些是违规求助? 2926539
关于积分的说明 8427772
捐赠科研通 2597793
什么是DOI,文献DOI怎么找? 1417361
科研通“疑难数据库(出版商)”最低求助积分说明 659675
邀请新用户注册赠送积分活动 642143