A Vision Transformer Network With Wavelet-Based Features for Breast Ultrasound Classification

乳腺癌 分类 乳腺超声检查 计算机科学 人工智能 小波 人工神经网络 模式识别(心理学) 机器学习 深度学习 医学 癌症 乳腺摄影术 内科学
作者
Chenyang He,Yan Diao,Xingcong Ma,Shuo Yu,Xin He,Guochao Mao,Xinyu Wei,Yu Zhang,Yang Zhao
出处
期刊:Image Analysis & Stereology [Slovenian Society for Stereology and Quantitative Image Analysis]
卷期号:43 (2): 185-194 被引量:5
标识
DOI:10.5566/ias.3116
摘要

Breast cancer is a prominent contributor to mortality associated with cancer in the female population on a global scale. The timely identification and precise categorization of breast cancer are of utmost importance in enhancing patient prognosis. Nevertheless, the task of precisely categorizing breast cancer based on ultrasound imaging continues to present difficulties, primarily due to the presence of dense breast tissues and their inherent heterogeneity. This study presents a unique approach for breast cancer categorization utilizing the wavelet based vision transformer network. To enhance the neural network’s receptive fields, we have incorporated the discrete wavelet transform (DWT) into the network input. This technique enables the capture of significant features in the frequency domain. The proposed model exhibits the capability to effectively capture intricate characteristics of breast tissue, hence enabling correct classification of breast cancer with a notable degree of precision and efficiency. We utilized two breast tumor ultrasound datasets, including 780 cases from Baheya hospital in Egypt and 267 patients from the UDIAT Diagnostic Centre of Sabadell in Spain. The findings of our study indicate that the proposed transformer network achieves exceptional performance in breast cancerclassification. With an AUC rate of 0.984 and 0.968 on both datasets, our approach surpasses conventional deep learning techniques, establishing itself as the leading method in this domain. This study signifies a noteworthy advancement in the diagnosis and categorization of breast cancer, showcasing the potential of the proposed transformer networks to enhance the efficacy of medical imaging analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵琪完成签到,获得积分10
刚刚
刚刚
爆米花应助尊敬的夏槐采纳,获得10
1秒前
临风发布了新的文献求助10
1秒前
约翰完成签到,获得积分10
2秒前
2秒前
好好应助roclie采纳,获得10
2秒前
3秒前
赵琪发布了新的文献求助10
3秒前
4秒前
4秒前
弓长完成签到,获得积分10
4秒前
华仔应助Timo干物类采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
dg完成签到,获得积分10
6秒前
睡觉大王完成签到,获得积分10
6秒前
7秒前
JYZ发布了新的文献求助10
7秒前
星辰大海应助wowo采纳,获得10
7秒前
8秒前
Owen应助夨坕采纳,获得10
9秒前
DamenS发布了新的文献求助10
10秒前
10秒前
希妍发布了新的文献求助10
10秒前
10秒前
11秒前
科研通AI6应助调皮万怨采纳,获得10
11秒前
zhaoa完成签到,获得积分20
12秒前
12秒前
脆脆发布了新的文献求助10
12秒前
我是老大应助zhouzhou采纳,获得10
12秒前
柠木完成签到 ,获得积分10
12秒前
机灵书易发布了新的文献求助10
13秒前
科研废物发布了新的文献求助10
13秒前
研友_VZG7GZ应助幽默春天采纳,获得10
13秒前
深情安青应助二东采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621020
求助须知:如何正确求助?哪些是违规求助? 4705750
关于积分的说明 14933223
捐赠科研通 4764227
什么是DOI,文献DOI怎么找? 2551427
邀请新用户注册赠送积分活动 1513956
关于科研通互助平台的介绍 1474733